首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   36篇
  409篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   17篇
  2014年   31篇
  2013年   28篇
  2012年   41篇
  2011年   30篇
  2010年   19篇
  2009年   12篇
  2008年   17篇
  2007年   17篇
  2006年   22篇
  2005年   28篇
  2004年   16篇
  2003年   19篇
  2002年   16篇
  2001年   9篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1983年   1篇
排序方式: 共有409条查询结果,搜索用时 20 毫秒
71.
Fluorescence-anisotropy-based homo-FRET detection methods can be employed to study clustering of identical proteins in cells. Here, the potential of fluorescence anisotropy microscopy for the quantitative imaging of protein clusters with subcellular resolution is investigated. Steady-state and time-resolved anisotropy detection and both one- and two-photon excitation methods are compared. The methods are evaluated on cells expressing green fluorescent protein (GFP) constructs that contain one or two FK506-binding proteins. This makes it possible to control dimerization and oligomerization of the constructs and yields the experimental relation between anisotropy and cluster size. The results show that, independent of the experimental method, the commonly made assumption of complete depolarization after a single energy transfer step is not valid here. This is due to a nonrandom relative orientation of the fluorescent proteins. Our experiments show that this relative orientation is restricted by interactions between the GFP barrels. We describe how the experimental relation between anisotropy and cluster size can be employed in quantitative cluster size imaging experiments of other GFP fusions. Experiments on glycosylphosphatidylinisotol (GPI)-anchored proteins reveal that GPI forms clusters with an average size of more than two subunits. For epidermal growth factor receptor (EGFR), we observe that ∼40% of the unstimulated receptors are present in the plasma membrane as preexisting dimers. Both examples reveal subcellular heterogeneities in cluster size and distribution.  相似文献   
72.
Background, aim, and scope  Characterization factors for ecotoxicity in the Life Cycle Impact Assessment (LCIA) are used to convert emissions into ecotoxicological impacts. Deriving them involves a fate and an effect analysis step. The fate factor quantifies the change in environmental concentration per unit of emission, while the effect factor quantifies the change in impact on the ecosystem per unit of environmental concentration. This paper calculates freshwater ecotoxicological effect factors for 397 pesticides belonging to 11 pesticide-specific toxic modes of action (TMoA), such as acetylcholinesterase inhibition and photosynthesis inhibition. Moreover, uncertainties in the effect factors due to uncertain background concentrations and due to limited toxicity data are quantified. Methods  To calculate median ecotoxicological effect factors (EEFs), toxic pressure assessments were made, based on the species sensitivity distribution—and the multisubstance potentially affected fraction—concept. The EEF quantifies an estimate of the fraction of species that is probably affected due to a marginal change in concentration of a pesticide. EEFs were divided into a TMoA-specific and a chemical-specific part, which were calculated on the basis of physicochemical properties, emissions, and toxicity data. Propagation of parameter uncertainty in the EEFs and the TMoA- and chemical-specific parts was quantified by Monte Carlo simulation and results were reported as 90% confidence intervals. Results  Median EEFs range from 2·10−3 to 7·106 l/g. Uncertainty in the TMoA-specific part is dominated by uncertainty in the TMoA-specific spread in species sensitivity and by uncertainty in the effective toxicity of a TMoA. Uncertainty in the chemical-specific part of the EEFs depends on the number of species for which toxicity data are available to calculate average toxicity (n s) and ranges from a median uncertainty of 2.6 orders of magnitude for n s = 2 to one order of magnitude for n s ≥ 4. The TMoA-specific effect factor for systemic fungicides shows the largest uncertainty range. For seven TMoAs, uncertainty ranges of the TMoA-specific effect factor are less than two orders of magnitude. For the other four TMoAs, the EEF uncertainty range is between two and eight orders of magnitude. For the chemical-specific part of the EEFs, we found that variation in uncertainty readily decreases for pesticides for which toxicity data are available for at least three species. Discussion  The same parameters that contributed most to uncertainty were found for pesticides as were found before for high-production-volume chemicals. However, uncertainty in concentrations of pesticides was lower. TMoA-specific factors obtained with the applied nonlinear method differ up to nine orders of magnitude from the factor of 0.5, which is used in the linear method. With the applied method, a distinction in EEFs can be made among different TMoAs. Conclusions   Ecotoxicological effect factors are presented, including overviews of their uncertainty ranges and the main contributors to uncertainty. The applied nonlinear method provides the possibility to quantify parameter uncertainty in the TMoA-specific part of the ecotoxicological effect factor, which is helpful to get more insight in how uncertainty in ecotoxicological characterization factors can be reduced. Recommendations and perspectives  The calculated uncertainty ranges can be included in life cycle assessment (LCA) case studies, which allows for better interpretation of LCA results obtained with the EEFs. To put the uncertainty in effect factors into perspective within LCIA, more information on the uncertainty in fate factors should be derived. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
73.
BackgroundIn falciparum malaria sequestration of erythrocytes containing mature forms of Plasmodium falciparum in the microvasculature of vital organs is central to pathology, but quantitation of this hidden sequestered parasite load in vivo has not previously been possible. The peripheral blood parasite count measures only the circulating, relatively non-pathogenic parasite numbers. P. falciparum releases a specific histidine-rich protein (PfHRP2) into plasma. Quantitative measurement of plasma PfHRP2 concentrations may reflect the total parasite biomass in falciparum malaria.ConclusionPlasma PfHRP2 concentrations may be used to estimate the total body parasite biomass in acute falciparum malaria. Severe malaria results from extensive sequestration of parasitised erythrocytes.  相似文献   
74.

Introduction

Measurement of optic nerve sheath diameter (ONSD) by ultrasound is increasingly used as a marker to detect raised intracranial pressure (ICP). ONSD varies with age and there is no clear consensus between studies for an upper limit of normal. Knowledge of normal ONSD in a healthy population is essential to interpret this measurement.

Methods

In a prospective observational study, ONSD was measured using a 15 MHz ultrasound probe in healthy volunteers in Chittagong, Bangladesh. The aims were to determine the normal range of ONSD in healthy Bangladeshi adults and children, compare measurements in males and females, horizontal and vertical beam orientations and left and right eyes in the same individual and to determine whether ONSD varies with head circumference independent of age.

Results

136 subjects were enrolled, 12.5% of whom were age 16 or under. Median ONSD was 4.41 mm with 95% of subjects in the range 4.25–4.75 mm. ONSD was bimodally distributed. There was no relationship between ONSD and age (≥4 years), gender, head circumference, and no difference in left vs right eye or horizontal vs vertical beam.

Conclusions

Ultrasonographic ONSD in Bangladeshi healthy volunteers has a narrow bimodal distribution independent of age (≥4 years), gender and head circumference. ONSD >4.75 mm in this population should be considered abnormal.  相似文献   
75.
In the past decade, mass-spectrometry-based methods have emerged for the quantitative profiling of dynamic changes in protein phosphorylation, allowing the behavior of thousands of phosphorylation sites to be monitored in a single experiment. However, when one is interested in specific signaling pathways, such shotgun methodologies are not ideal because they lack selectivity and are not cost and time efficient with respect to instrument and data analysis time.Here we evaluate and explore a peptide-centric antibody generated to selectively enrich peptides containing the cAMP-dependent protein kinase (PKA) consensus motif. This targeted phosphoproteomic strategy is used to profile temporal quantitative changes of potential PKA substrates in Jurkat T lymphocytes upon prostaglandin E2 (PGE2) stimulation, which increases intracellular cAMP, activating PKA. Our method combines ultra-high-specificity motif-based immunoaffinity purification with cost-efficient stable isotope dimethyl labeling. We identified 655 phosphopeptides, of which 642 (i.e. 98%) contained the consensus motif [R/K][R/K/X]X[pS/pT]. When our data were compared with a large-scale Jurkat T-lymphocyte phosphoproteomics dataset containing more than 10,500 phosphosites, a minimal overlap of 0.2% was observed. This stresses the need for such targeted analyses when the interest is in a particular kinase.Our data provide a resource of likely substrates of PKA, and potentially some substrates of closely related kinases. Network analysis revealed that about half of the observed substrates have been implicated in cAMP-induced signaling. Still, the other half of the here-identified substrates have been less well characterized, representing a valuable resource for future research.The identification and quantification of protein phosphorylation under system perturbations is an integral part of systems biology (1, 2). The combination of phosphopeptide enrichment (36), stable isotope labeling, and high-resolution mass spectrometry (MS) methods (79) has become the method of choice for the identification of novel phosphorylation sites and for the quantitation of temporal dynamics within signaling networks (10, 11), allowing the behavior of thousands of phosphorylation sites to be studied in a single experiment (10, 12, 13). Nowadays, one of the most commonly adopted high-throughput phosphoproteomics strategies utilizes two consecutive separation steps: (i) an initial fractionation to reduce the sample complexity, and (ii) a phosphopeptide-specific affinity purification. Such techniques include strong cation exchange fractionation under acidic conditions (3), followed by a chelation-based method with the use of metal ions (i.e. immobilized metal ion affinity chromatography (4), metal oxide affinity chromatography (10, 14), or Ti4+ immobilized metal ion affinity chromatography (6)). Alternatives to strong cation exchange for the first sample fractionation step have also been reported, including the use of electrostatic repulsion liquid chromatography (15, 16), which is well suited for the identification of multiply phosphorylated peptides, or hydrophilic interaction chromatography (17).Although the number of detected phosphorylated peptides is nowadays impressive, these kinds of methodologies are still inclined to identify/quantify the more abundant phosphoproteins present in a sample. For example, phosphotyrosine peptides are underrepresented because of their relatively lower abundance.In order to analyze key signaling events that may occur on less abundant phosphoproteins, more targeted approaches, focused on a specific pathway or a specific post-translational modification, are thus still essential. Studies examining post-translational modifications are often based on immunoaffinity purification at the protein or peptide level using dedicated antibodies. Recent examples include the selective enrichment of acetylated lysines (18) and phosphorylated tyrosines (19, 20). More recently, the first specific methods targeting serine/threonine phosphorylation motifs using immune-affinity assays have emerged (21, 22). The advantages of targeted approaches are their potentially higher sensitivity and more specific throughput with, as a consequence, relatively faster and easier data interpretation, which make them attractive for many systems biology applications.Immunoaffinity enrichment can be applied at both the protein and the peptide level, and both have been explored to study protein tyrosine phosphorylation (23). The first one results mainly in information on total protein phosphorylation levels. The detection of the actual phosphoresidue might be hampered by the high content of unmodified peptides derived from the immune-purified phosphoprotein and its binding partners. Immunoprecipitation at the peptide level (20, 24, 25), in contrast, leads to improved phosphosite characterization, with the identification of hundreds of sites, albeit with the loss (generally) of information regarding total protein expression.To profile the dynamic regulation of phosphorylation events via mass spectrometry, stable isotope labeling is often implemented, either with the use of amino acids in cell culture (10) or via chemical peptide labeling of the proteolytic digests (26, 27). To identify low-abundant signaling events, phosphoprotein/phosphopeptide immunoprecipitation is typically performed on several milligrams of material because of the substoichiometric abundance of post-translational modifications. This may hamper the use of expensive isotope-labeling reagents such as iTRAQ or tandem mass tag reagents, given the large amount of chemicals needed. Boersema et al. (28) introduced an alternative sensitive and accurate triplex labeling approach using inexpensive reagents (i.e. formaldehyde) that is much less limited in terms of the sample type or amount. We combined this latter stable-isotope dimethyl labeling approach (2729) with highly specific antibodies raised against a set of cAMP-dependent protein kinase (PKA) phosphorylated substrates as based on the current literature (11, 3034). It is generally accepted that PKA phosphorylates sites with the reasonably stringent consensus motif [R/K][R/K/X]X[pS/pT]. It should be noted that this consensus motif resembles somewhat the motifs of other AGC kinases (e.g. Akt, PKG, PKC).The basicity of the PKA motifs may hamper their analysis via MS-based proteomics, especially when trypsin is used as a protease, as the peptides may become too small to be sequenced. The use of trypsin is also unfavorable in the approach presented here when attempting to immunoprecipitate peptides bearing the PKA motif. Therefore, we decided to use Lys-C in order to keep the (dominant (RRX[pS/pT])) phosphorylated motif intact. To enhance identification, we applied decision-tree MS/MS technology (9), which makes use of HCD and ETD for more efficient fragmentation, higher mass accuracy in tandem MS mode, and less background noise (35).We applied this method to screen the response of Jurkat T cells to prostaglandin E2 (PGE2) treatment. PGE2 is a potent inflammatory mediator that plays an important role in several immune-regulatory actions (36). It is produced by many different cell types, including tumor cells, where carcinogenesis is associated with chronic inflammatory responses (37). PGE2 signaling in T cells is initiated by its binding to the G protein–coupled receptors EP1, -2, -3, and -4. Signaling pathways that are initiated by PGE2 are for the most part under control of the second messenger cyclic adenosine monophosphate (cAMP),1 which is generated from ATP by adenylyl cyclase when PGE2 binds to EP2 or EP4 receptors. One of the primary targets of cAMP is PKA—cAMP binding releases the catalytic subunit activating the kinase. In the current study, we efficiently enriched close to 650 phosphopeptides containing the [R/K][R/K/X]X[pS/pT] consensus motif. Almost all these sites were absent in a recently reported comprehensive phosphoproteomics dataset of Jurkat T cells (12), compiled using shotgun strong cation exchange–immobilized metal ion affinity chromatography analysis and containing ∼10,500 phosphorylation sites, illustrative of the complementarity and selectivity of our approach. The qualitative and quantitative data presented here provide a wide-ranging and credible resource of likely PKA substrates. Network analysis confirmed several established cAMP-dependent signaling nodes in our dataset, although most identified potential PKA substrates are “novel” (i.e. not previously reported and/or linked to PKA). Therefore, the dataset presented here can be considered as a comprehensive and reliable resource for future research into cAMP-related signaling.  相似文献   
76.
Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10mono) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10mono no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10mono to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fcα), a natural dimer. Stable dimeric forms of IL-10, like Fcα-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications.  相似文献   
77.
Production of conidia of the biocontrol fungus Coniothyrium minitans by solid-state cultivation in a packed-bed reactor on an industrial scale is feasible. Spore yield and oxygen consumption rate of C. minitans during cultivation on oats and three inert solids (hemp, perlite, and bagasse) saturated with a liquid medium were determined in laboratory-scale experiments. The sensitivity of the fungus to reduced aw, and the water desorption isotherms of the four solid materials were also determined. C. minitans is very sensitive to reduced aw: 50% inhibition of respiration was found at aw 0.95, spore formation was completely inhibited at aw 0.97. A simplified mathematical model taking into account convective and evaporative cooling was used to simulate temperature and moisture gradients in the bed during cultivation. Adequate temperature control can be achieved with acceptable air flow rates for all four solid matrices. Moisture control is the limiting factor for cultivation in a packed bed. Oats cannot be used due to the shrinkage and aw reduction caused by evaporative cooling. Of the three inert supports tested, hemp provides the best spore yield and control of water activity, due to its high water uptake capacity. A spore yield of 9 x 10(14) conidia per m(3) packed bed can be achieved in 18 days, using hemp impregnated with a solution containing 100 g dm(-3) glucose and 20 g dm(-3) potato extract. Sufficient water is predicted to be available after 18 days, to allow a higher initial nutrient concentration, which may lead to higher spore yields.  相似文献   
78.
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号