首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   66篇
  2024年   2篇
  2022年   6篇
  2021年   10篇
  2020年   8篇
  2019年   5篇
  2018年   13篇
  2017年   12篇
  2016年   13篇
  2015年   28篇
  2014年   45篇
  2013年   46篇
  2012年   47篇
  2011年   51篇
  2010年   26篇
  2009年   30篇
  2008年   30篇
  2007年   48篇
  2006年   36篇
  2005年   26篇
  2004年   21篇
  2003年   18篇
  2002年   17篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   10篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1991年   5篇
  1990年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1973年   2篇
  1970年   2篇
  1967年   1篇
  1966年   4篇
  1960年   1篇
排序方式: 共有635条查询结果,搜索用时 297 毫秒
91.
Coevolution between different biological entities is considered an important evolutionary mechanism at all levels of biological organization. Here, we provide evidence for coevolution of a yeast killer strain (K) carrying cytoplasmic dsRNA viruses coding for anti‐competitor toxins and an isogenic toxin‐sensitive strain (S) during 500 generations of laboratory propagation. Signatures of coevolution developed at two levels. One of them was coadaptation of K and S. Killing ability of K first increased quickly and was followed by the rapid invasion of toxin‐resistant mutants derived from S, after which killing ability declined. High killing ability was shown to be advantageous when sensitive cells were present but costly when they were absent. Toxin resistance evolved via a two‐step process, presumably involving the fitness‐enhancing loss of one chromosome followed by selection of a recessive resistant mutation on the haploid chromosome. The other level of coevolution occurred between cell and killer virus. By swapping the killer viruses between ancestral and evolved strains, we could demonstrate that changes observed in both host and virus were beneficial only when combined, suggesting that they involved reciprocal changes. Together, our results show that the yeast killer system shows a remarkable potential for rapid multiple‐level coevolution.  相似文献   
92.
93.
A screening method was developed for the detection of enzymes converting loganin to secologanin, a precursor in the biosynthesis of indole alkaloids. The method uses a transgenic yeast culture expressing two cDNAs encoding enzymes involved in the terpenoid indole alkaloid biosynthesis. In the presence of secologanin, the yeast culture produces a yellow compound visible on nitrocellulose. This color change was used to screen a cDNA library of Catharanthus roseus for a putative enzyme converting loganin into secologanin.  相似文献   
94.
Recent observational studies form oligotrophic waters provide ample evidence that mixotrophic flagellates often account for the bulk of bacterivory. However, we lack a general framework that allows a mechanistic understanding of success of mixotrophs in the competition with heterotrophic bacterivores. This is especially needed for integrating mixotrophy in models of the microbial loop. Based on general tradeoffs linked to the combined resource use in mixotrophs (generalist versus specialist), we propose a concept where mixotrophs are favored by conditions of high light – low losses, corresponding to the situation found in the surface waters of oligotrophic oceans. Under such conditions, they can achieve positive net growth at very low resource levels, allowing simultaneous competition with specialized protists. Conversely, heterotrophic bacterivores and photoautotrophs should be especially favored in more productive and low‐light conditions. We show experimentally that the combined effect of light and loss rates (dilution) predicts the success of mixotrophic bacterivorous flagellates. Moreover, our results suggest that total bacterivory, contrary as seen in the traditional microbial loop concept, has a more intricate coupling to light.  相似文献   
95.

Background  

The human gastrointestinal (GI) tract contains a diverse collection of bacteria, most of which are unculturable by conventional microbiological methods. Increasingly molecular profiling techniques are being employed to examine this complex microbial community. The purpose of this study was to develop a microarray technique based on 16S ribosomal gene sequences for rapidly monitoring the microbial population of the GI tract.  相似文献   
96.
Spatial autocorrelation and dispersal limitation in freshwater organisms   总被引:2,自引:0,他引:2  
Dispersal can limit the ranges of species and the diversity of communities. Despite its importance, little is known about its role in freshwater habitats and its relation to habitat type (lentic vs. lotic), especially for organisms with cryptic dispersal methods such as plankton. Poor dispersers are expected to show more clumped distributions or greater spatial autocorrelation (SA) in community composition than good dispersers. We examined patterns of SA across freshwater taxa with different dispersal modes (active vs. passive) and their association with habitat type (lake vs. stream) using 18 spatially explicit community composition data sets. We found significant relationships between SA and body size among taxa in lake habitats, but not in streams. However, the increase in SA with body size in lakes was driven entirely by fishes—organisms ranging in size from diatoms to macro-invertebrates showed equivalent levels of SA. These results support the idea that large organisms are less effective dispersers in aquatic environments, resulting in greater SA in community structure over broad scales. Streams may be effectively more connected than lakes as patterns of SA and body size were weaker in lotic habitats. Our data suggest that the critical threshold where greater body size increases dispersal limitation seems to come at the juncture between invertebrates and vertebrates rather than that between unicellular and multicellular organisms as has been previously suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
97.
An integrated stratigraphic study of a Neogene lacustrine succession on the Pag Island (Croatia), combining quantitative pollen analysis, magnetostratigraphy, cyclostratigraphy, biostratigraphy and gamma-ray measurements, provides new insights into orbitally controlled variations in palaeo-vegetation and depositional patterns in the Dinaride Lake System. The quantitative palynological record shows a cyclical pattern of vegetation changes that closely corresponds to sedimentological patterns. The intervals with a high abundance of thermophilous and xeric indicators, suggesting a warm and dry climate, generally coincide with intervals of frequent lignite deposition and shallow lake facies. This suggests that both records are dominantly controlled by variations in past climatic conditions and lake level. Our data show two large-scale warming and shallowing-upward cycles, which are interpreted to be forced by the ~ 100 kyr eccentricity cycle of the Earth's orbit. Magnetostratigraphic data of the examined section reveal a long (113 m) reversed polarity interval, followed by a 7 m thick interval of normal polarity at the top. The inferred depositional rate of ~ 0.3 mm/yr, combined with biostratigraphic constraints by mollusks, suggests that the most logical correlation of the reversed interval is to chron C5Cr. This indicates that the Pag succession was deposited between 17.1 and 16.7 Ma and that it corresponds to the Burdigalian Stage of the Early Miocene, and the regional Karpatian Stage of the Central Paratethys. The high relative percentage of thermophilous pollen taxa, Engelhardia and Taxodium-type being the most prominent, generally indicates a subtropical humid climate for the SW Croatian part of the Dinaride Lake System. The observed warming trend is possibly related to the onset of the Miocene Climatic Optimum.  相似文献   
98.
Grazer control of periphyton biomass has been addressed in numerous experimental studies in all kinds of aquatic habitats. In this meta‐analysis, the results of 865 experiments are quantitatively synthesized in order to address the following questions: (i) Do lotic, lentic, and marine ecosystems differ in their degree of grazer control of periphyton biomass? (ii) Which environmental variables affect the degree of grazer control? (iii) How much does the result of these experiments depend on facets of experimental design? Across all ecosystems, the grazers removed on average 59% of the periphyton biomass, with grazing being significantly stronger for laboratory (65%) than for field (56%) experiments. Neither field nor lab experiments showed a significant difference among lotic, lentic, and coastal habitats. Among different taxonomic consumer groups, crustaceans (amphipods and isopods) and trichopteran larvae removed the highest proportion of periphyton biomass. Grazer effects increased with increasing algal biomass, with decreasing resource availability and with increasing temperature, especially in field experiments. Grazer effects also increased with increasing total grazer biomass in field experiments but showed the opposite trend in lab experiments, indicating a tendency toward overcrowded lab experiments. Other aspects of experimental design, such as cage type, size, and duration of the study, strongly affected the outcome of the experiments, suggesting that much care has to be placed on the choice of experimental design.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号