首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   53篇
  国内免费   1篇
  2022年   10篇
  2021年   19篇
  2020年   8篇
  2019年   21篇
  2018年   12篇
  2017年   13篇
  2016年   24篇
  2015年   25篇
  2014年   38篇
  2013年   56篇
  2012年   50篇
  2011年   54篇
  2010年   24篇
  2009年   36篇
  2008年   39篇
  2007年   57篇
  2006年   41篇
  2005年   32篇
  2004年   36篇
  2003年   44篇
  2002年   35篇
  2001年   28篇
  2000年   38篇
  1999年   24篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   9篇
  1993年   9篇
  1992年   18篇
  1991年   15篇
  1990年   21篇
  1989年   18篇
  1988年   16篇
  1987年   10篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   9篇
  1982年   3篇
  1980年   4篇
  1979年   2篇
  1975年   2篇
  1974年   5篇
  1972年   2篇
  1969年   2篇
  1968年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有970条查询结果,搜索用时 15 毫秒
161.
162.
Cytoplasmic ribonucleoprotein granules, known as processing bodies (P-bodies), contain a common set of conserved RNA-processing enzymes, and mRNAs with AU-rich elements (AREs) are delivered to P-bodies for translational silencing. Although the dynamics of P-bodies is physically linked to cytoskeletal network, it is unclear how small GTPases are involved in the P-body regulation and the ARE-mRNA metabolism. We found here that glucose depletion activates RhoA GTPase and alters the P-body dynamics in HeLa cells. These glucose-depleted effects are reproduced by the overexpression of the RhoA-subfamily GTPases and conversely abolished by the inhibition of RhoA activation. Interestingly, both RhoA activation and glucose depletion inhibit the mRNA accumulation and degradation. These findings indicate that RhoA participates in the stress-induced rearrangement of P-bodies and the release of nucleated ARE-mRNAs for their stabilization.  相似文献   
163.
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-deficient fibroblasts were stably complemented with either wild-type Artemis or an endonuclease-deficient D165N mutant. Wild-type Artemis completely restored resistance to γ-rays, bleomycin and neocarzinostatin, and also restored DSB-repair proficiency in G0/G1 phase as measured by pulsed-field gel electrophoresis and repair focus resolution. In contrast, cells expressing the D165N mutant, even at very high levels, remained as chemo/radiosensitive and repair deficient as the parental cells, as evidenced by persistent γ-H2AX, 53BP1 and Mre11 foci that slowly increased in size and ultimately became juxtaposed with promyelocytic leukemia protein nuclear bodies. In normal fibroblasts, overexpression of wild-type Artemis increased radioresistance, while D165N overexpression conferred partial repair deficiency following high-dose radiation. Restoration of chemo/radioresistance by wild-type, but not D165N Artemis suggests that the lack of endonucleolytic trimming of DNA ends is the principal cause of sensitivity to double-strand cleaving agents in Artemis-deficient cells.  相似文献   
164.
Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that is activated by binding to its regulatory subunit, p35. The calpain-mediated cleavage of p35 to p25 and the resulting aberrant activity and neurotoxicity of Cdk5 have been implicated in neurological disorders, such as Alzheimer's disease. To gain further insight into the molecular mechanisms underlying the pathological function of Cdk5, we investigated the role of the calpain inhibitor protein calpastatin (CAST), in controlling the aberrant production of p25. For this purpose, brain tissue from wild-type, CAST-over-expressing (transgenic), and CAST knockout mice were analyzed. Cleavage of p35 to p25 was increased in extracts from CAST knockout mice, compared with wild-type. Conversely, generation of p25 was not detected in brain lysates from CAST-over-expressing mice. CAST expression was 5-fold higher in mouse cerebellum than cerebral cortex. Accordingly, p25 production was lower in the cerebellum than the cerebral cortex. Furthermore, the Ca(2+) -dependent degradation of p35 by proteasome was evident when calpain was inhibited. Taken together, these results suggest that CAST is a crucial regulator of calpain activity, the production of p25, and, hence, the deregulation of Cdk5. Therefore, impairment of CAST expression and its associated mechanisms may contribute to the pathogenesis of neurodegenerative disorders.  相似文献   
165.
N-Acetylglucosaminyltransferase V (GnT-V) catalyzes the β1,6 branching of N-acetylglucosamine on N-glycans. GnT-V expression is elevated during malignant transformation in various types of cancer. However, the mechanism by which GnT-V promotes cancer progression is unclear. To characterize the biological significance of GnT-V, we established GnT-V transgenic (Tg) mice, in which GnT-V is regulated by a β-actin promoter. No spontaneous cancer was detected in any organs of the GnT-V Tg mice. However, GnT-V expression was up-regulated in GnT-V Tg mouse skin, and cultured keratinocytes derived from these mice showed enhanced migration, which was associated with changes in E-cadherin localization and epithelial-mesenchymal transition (EMT). Further, EMT-associated factors snail, twist, and N-cadherin were up-regulated, and cutaneous wound healing was accelerated in vivo. We further investigated the detailed mechanisms of EMT by assessing EGF signaling and found up-regulated EGF receptor signaling in GnT-V Tg mouse keratinocytes. These findings indicate that GnT-V overexpression promotes EMT and keratinocyte migration in part through enhanced EGF receptor signaling.  相似文献   
166.
The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.  相似文献   
167.
Antifreeze proteins (AFPs) are proteins with affinity towards ice and contribute to the survival of psychrophiles in subzero environment. Limited studies have been conducted on how AFPs from psychrophilic yeasts interact with ice. In this study, we describe the functional properties of an antifreeze protein from a psychrophilic Antarctic yeast, Glaciozyma antarctica. A cDNA encoding the antifreeze protein, AFP4, from G. antarctica PI12 was amplified from the mRNA extracted from cells grown at 4 °C. Sequence characterisation of Afp4 showed high similarity to fungal AFPs from Leucosporidium sp. AY30, LeIBP (93 %). The 786-bp cDNA encodes a 261-amino-acid protein with a theoretical pI of 4.4. Attempts to produce the recombinant Afp4 in Escherichia coli resulted in the formation of inclusion bodies (IB). The IB were subsequently denatured and refolded by dilution. Gel filtration confirmed that the refolded recombinant Afp4 is monomeric with molecular mass of ~25 kDa. Thermal hysteresis (TH) and recrystallisation inhibition assays confirmed the function of Afp4 as an antifreeze protein. In the presence of Afp4, ice crystals were modified into hexagonal shapes with TH values of 0.08 °C and smaller ice grains were observed compared with solutions without AFP. Structural analyses via homology modelling showed that Afp4 folds into β-helices with three distinct faces: a, b and c. Superimposition analyses predicted the b-face as the ice-binding surface of Afp4, whereby the mechanism of interaction is driven by hydrophobic interactions and the flatness of surface. This study may contribute towards an understanding of AFPs from psychrophilic yeasts.  相似文献   
168.
Understanding the molecular mechanisms of oral carcinogenesis will yield important advances in diagnostics, prognostics, effective treatment, and outcome of oral cancer. Hence, in this study we have investigated the proteomic and peptidomic profiles by combining an orthotopic murine model of oral squamous cell carcinoma (OSCC), mass spectrometry-based proteomics and biological network analysis. Our results indicated the up-regulation of proteins involved in actin cytoskeleton organization and cell-cell junction assembly events and their expression was validated in human OSCC tissues. In addition, the functional relevance of talin-1 in OSCC adhesion, migration and invasion was demonstrated. Taken together, this study identified specific processes deregulated in oral cancer and provided novel refined OSCC-targeting molecules.  相似文献   
169.
Somatic mutations in the epidermal growth factor receptor (EGFR) gene are associated with clinical response to EGFR tyrosine kinase inhibitors (TKIs), such as gefitinib, in patients with non-small cell lung cancer (NSCLC). However, humoral immune responses to EGFR in NSCLC patients have not been well studied. In this study, we investigated the clinical significance of immunoglobulin G (IgG) responses to EGFR-derived peptides in NSCLC patients receiving gefitinib. Plasma IgG titers to each of 60 different EGFR-derived 20-mer peptides were measured by the Luminex system in 42 NSCLC patients receiving gefitinib therapy. The relationships between the peptide-specific IgG titers and presence of EGFR mutations or patient survival were evaluated statistically.IgG titers against the egfr_481–500, egfr_721–740, and egfr_741–760 peptides were significantly higher in patients with exon 21 mutation than in those without it. On the other hand, IgG titers against the egfr_841–860 and egfr_1001–1020 peptides were significantly lower and higher, respectively, in patients with deletion in exon 19. Multivariate Cox regression analysis showed that IgG responses to egfr_41_ 60, egfr_61_80 and egfr_481_500 were significantly prognostic for progression-free survival independent of other clinicopathological characteristics, whereas those to the egfr_41_60 and egfr_481_500 peptides were significantly prognostic for overall survival. Detection of IgG responses to EGFR-derived peptides may be a promising method for prognostication of NSCLC patients receiving gefitinib. Our results may provide new insight for better understanding of humoral responses to EGFR in NSCLC patients.  相似文献   
170.
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号