首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   27篇
  国内免费   1篇
  2023年   2篇
  2022年   8篇
  2021年   7篇
  2019年   3篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   11篇
  2013年   14篇
  2012年   22篇
  2011年   26篇
  2010年   9篇
  2009年   10篇
  2008年   19篇
  2007年   12篇
  2006年   8篇
  2005年   11篇
  2004年   17篇
  2003年   11篇
  2002年   9篇
  2001年   11篇
  2000年   14篇
  1999年   14篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   15篇
  1991年   12篇
  1990年   11篇
  1989年   15篇
  1988年   8篇
  1987年   8篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1982年   3篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1968年   3篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有407条查询结果,搜索用时 62 毫秒
231.
232.
RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.  相似文献   
233.
234.
Endometrial cancer arises from the uterine body and fundus in many cases, but can also originate from the lower region of the uterine body through the upper region of the cervix. Such tumors are referred to as carcinoma of the lower uterine segment (LUS) or isthmus, and account for 3-6.3% of all cases of endometrial cancer. This relatively low incidence has permitted performance of only small-scale studies, but the clinical and pathological characteristics of carcinoma of the LUS in all these reports have differed from those of other endometrial cancers. Generally, endometrial cancer is classified into estrogen-dependent endometrioid adenocarcinoma (designated as type I), and non-endometrioid types that are less associated with estrogen and include poorly differentiated adenocarcinoma (type II). In some reports, carcinoma of the LUS has been found to have type II characteristics. Carcinoma of the LUS has also been associated with Lynch syndrome, a hereditary disease with frequent development of colorectal, endometrial, and ovarian cancers. Lynch syndrome is thought to be induced by mismatch repair gene mutation. The frequency of Lynch syndrome in cases of general endometrial cancer is 1-2%. In contrast, the frequency in patients with carcinoma of the LUS is much higher, with up to 29% of cases diagnosable with Lynch syndrome and a high frequency of hMSH2 mutation found in one study. This suggests that further investigation of the clinical and pathological characteristics of carcinoma of the LUS and the association with Lynch syndrome is required through performance of a large-scale survey.  相似文献   
235.
Gold magnetic particles (GMP) are magnetic iron oxide particles modified with gold nanoparticles. The gold particles of GMP specifically bind to cysteine and methionine through Au-S binding. The aim of the present study was to establish a quick and easy protein purification system using novel peptide tags and GMP. Here, we created a variety of peptide tags containing methionine and cysteine and analyzed their affinity to GMP. Binding assays using enhanced green fluorescent protein (EGFP) as a model protein indicated that the tandem methionine tags comprising methionine residues had higher affinity to the GMP than tags comprising both methionine and cysteine residues. Tags comprising both methionine and glycine residues showed slightly higher affinity to GMP and higher elution efficiency than the all-methionine tags. A protein purification assay using phosphorylcholine-treated GMP demonstrated that both a tandem methionine-tagged EGFP and a methionine and glycine-tagged EGFP were specifically purified from a protein mixture with very high efficiency. The efficiency was comparable to that of a histidine-tagged protein purification system. Together, these novel peptide tags, "methionine tags", specifically bind to GMP and can be used for a highly efficient protein purification system.  相似文献   
236.
General cellular functions of proteasomes occur through protein degradation, whereas the specific function of immunoproteasomes is the optimization of antigen processing associated with MHC class I. We and others previously reported that deficiency in subunits of immunoproteasomes impaired the activation of antigen-specific CD8+ T cells, resulting in higher susceptibility to tumor and infections. We demonstrated that CD8+ T cells contributed to protection against malaria parasites. In this study, we evaluated the role of immunoproteasomes in the course of infection with rodent malaria parasites. Unexpectedly, Plasmodium yoelii infection of mice deficient in LMP7, a catalytic subunit of immunoproteasomes, showed lower parasite growth in the early phase of infection and lower lethality compared with control mice. The protective characteristics of LMP7-deficient mice were not associated with enhanced immune responses, as the mutant mice showed comparable or diminished activation of innate and acquired immunity. The remarkable difference was observed in erythrocytes instead of immune responses. Parasitized red blood cells (pRBCs) purified from LMP7-deficient mice were more susceptible to phagocytosis by macrophages compared with those from wild-type mice. The susceptibility of pRBC to phagocytosis appeared to correlate with deformity of the membrane structures that were only observed after infection. Our results suggest that RBCs of LMP7-deficient mice were more likely to deform in response to infection with malaria parasites, presumably resulting in higher susceptibility to phagocytosis and in the partial resistance to malaria.  相似文献   
237.
Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.  相似文献   
238.
Cerium oxide (CeO(2)) is an important metal oxide used for industrial products. Many investigations about the cellular influence of CeO(2) nanoparticles have been done, but results are contradictory. It has been reported that CeO(2) nanoparticles have an anti-oxidative effect in cells, but it has also been reported that CeO(2) nanoparticles induce oxidative stress. We investigated the potential influence on cells and the mechanisms induced by CeO(2) nanoparticles in vitro. We prepared a stable CeO(2) culture medium dispersion. Cellular responses in CeO(2) medium-exposed cells were examined. Cellular uptake of CeO(2) nanoparticles was observed. After 24-h exposure, a high concentration of CeO(2) nanoparticles (~200 mg/ml) induced an increase in the intracellular level of reactive oxygen species (ROS); a low concentration of CeO(2) nanoparticles induced a decrease in the intracellular ROS level. On the other hand, exposure of CeO(2) nanoparticle for 24 h had little influence on the cell viability. Exposure of CeO(2) nanoparticles increased the intracellular Ca(2+) concentration and also Calpain was activated. These results suggest that CeO(2) nanoparticles have a potential to induce intracellular oxidative stress and increase the intracellular Ca(2+) level, but these influences are small.  相似文献   
239.
Plant pathogens alter the course of plant developmental processes, resulting in abnormal morphology in infected host plants. Phytoplasmas are unique plant‐pathogenic bacteria that transform plant floral organs into leaf‐like structures and cause the emergence of secondary flowers. These distinctive symptoms have attracted considerable interest for many years. Here, we revealed the molecular mechanisms of the floral symptoms by focusing on a phytoplasma‐secreted protein, PHYL1, which induces morphological changes in flowers that are similar to those seen in phytoplasma‐infected plants. PHYL1 is a homolog of the phytoplasmal effector SAP54 that also alters floral development. Using yeast two‐hybrid and in planta transient co‐expression assays, we found that PHYL1 interacts with and degrades the floral homeotic MADS domain proteins SEPALLATA3 (SEP3), APETALA1 (AP1) and CAULIFLOWER (CAL). This degradation of MADS domain proteins was dependent on the ubiquitin–proteasome pathway. The expression of floral development genes downstream of SEP3 and AP1 was disrupted in 35S::PHYL1 transgenic plants. PHYL1 was genetically and functionally conserved among other phytoplasma strains and species. We designate PHYL1, SAP54 and their homologs as members of the phyllody‐inducing gene family of ‘phyllogens’.  相似文献   
240.
In budding yeast, the Mitotic Exit Network (MEN) regulates anaphase promoting complex/cyclosome (APC/C) via the Dbf2-Cdc14 signaling cascade. Dbf2 kinase phosphorylates and activates Cdc14 phosphatase, which removes the inhibitory phosphorylation of the APC/C cofactor Cdh1. Although each component of the MEN was highly conserved during evolution, there is presently no evidence supporting direct phosphorylation of CDC14 by large tumor suppressor kinase 1 (LATS1), the human counterpart of Dbf2; hence, it is unclear how LATS1 regulates APC/C. Here, we demonstrate that LATS1 phosphorylates the Thr7 (T7) residue of the APC/C component CDC26 directly. Nocodazole-induced phosphorylation of T7 was reduced by knockdown of LATS1 and LATS2 in HeLa cells, indicating that both of these kinases contribute to the phosphorylation of CDC26 in vivo. The T7 residue of CDC26 is critical for its interaction with APC6, a tetratricopeptide repeat-containing subunit of APC/C, and mutation of this residue to Asp (T7D) reduced the interaction of CDC26 with APC6. Replacement of endogenous CDC26 in HeLa cells with exogenous phosphor-mimic T7D-mutated CDC26 increased the elution size of APC/C subunits in a gel filtration assay, implying a change in the APC/C assembly upon phosphorylation of CDC26. Furthermore, T7D-mutated CDC26 promoted the ubiquitination of polo-like kinase 1, a well-known substrate of APC/C. Overall, these results suggest that LATS1/2 are novel kinases involved in APC/C phosphorylation and indicate a direct regulatory link between LATS1/2 and APC/C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号