首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   484篇
  免费   45篇
  529篇
  2021年   11篇
  2018年   8篇
  2017年   3篇
  2016年   6篇
  2015年   9篇
  2014年   12篇
  2013年   21篇
  2012年   23篇
  2011年   32篇
  2010年   13篇
  2009年   29篇
  2008年   19篇
  2007年   26篇
  2006年   25篇
  2005年   23篇
  2004年   19篇
  2003年   21篇
  2002年   12篇
  2001年   9篇
  2000年   17篇
  1999年   11篇
  1998年   7篇
  1996年   3篇
  1995年   4篇
  1994年   5篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   12篇
  1989年   9篇
  1988年   5篇
  1987年   7篇
  1986年   10篇
  1985年   8篇
  1984年   5篇
  1983年   8篇
  1982年   6篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   8篇
  1975年   9篇
  1974年   5篇
  1973年   7篇
  1972年   5篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
21.
The reaction of beef kidney rhodanese with selenosulfate was studied. The selenium-treated enzyme shows an absorption spectrum with a maximum at 375 nm attributable to a sulfoselenide group. This absorption is bleached by addition of cyanide. After cyanide treatment stoichiometric amount of selenocyanate can be found. The intrinsic fluorescence of rhodanese is quenched by addition of stoichiometric selenosulfate. This effect can be reversed by cyanide or sulfite but not by selenite or glutathione. By comparison with model complexes the selenium-rhodanese intermediate was identified as a cysteinyl-selenium derivative.  相似文献   
22.
 Trifoliate orange [Poncirus trifoliata (L.) Raf.] is frequently used as a parent in citrus rootstock breeding, but the origin and amount of genetic diversity in germ plasm collections are poorly understood. Most accessions are self-compatible, but produce a mixture of sexual and apomictic seedlings. Variation among 48 vegetatively propagated trifoliate orange accessions was assessed at seven isozyme loci, together with the restriction fragment length polymorphisms (RFLPs) detected by 38 probe-enzyme combinations and the inter-simple sequence repeat (ISSR) markers generated by 11 primers. Isozymes and RFLPs detected few polymorphisms among accessions, although genetic analysis has shown that the common phenotype is heterozygous for four isozyme and at least four RFLP loci. ISSR amplification generated multiple banding profiles with an average of 58 fragments/primer/accession. These fragments were repeatable across DNA samples extracted from different trees of the same accession or extracted at different times, and across separate PCR runs. Seventeen unique marker phenotypes were identified. The 48 trifoliate orange accessions were classified into four major groups based on polymorphic ISSR markers. All large-flowered accessions are in group 4, while small-flowered accessions are in group 3. Many ISSR markers segregated in progeny derived by open-pollination (probably mostly selfing) of a common accession, indicating that these ISSR markers are also heterozygous. Accessions having identical genotypes for a large number of heterozygous markers are unlikely to have diverged by recombination. Thus the limited divergence we detected among most accessions most likely originated by mutation. ‘Monoembryonic’ and ‘Simmons’ differed from other accessions only in the loss of specific markers, indicating that they originated as zygotic seedlings of individuals similar to the common genotype. Three accessions recently introduced from China have relatively different fingerprints with 3–14 unique ISSR markers, and probably represent a much more divergent germ plasm that may be a valuable breeding resource. Received: 8 August 1996 / Accepted: 21 March 1997  相似文献   
23.
Glutathione-S-transferase activity has been identified in the cytosol of human placenta. The specific activity measured is about 50% of that found in human liver. While some kinetic data have a close correspondence with those attributed to transferases of other sources, the molecular weight (60.000 daltons) and electric properties of this protein are unusual. The inhibitory effect of several non-substrate compounds suggests that also the placental Glutathione-S-transferase may play some role in detoxication of exogenous substances.  相似文献   
24.
25.
Nucleophosmin (NPM1) is an abundant, ubiquitously expressed protein mainly localized at nucleoli but continuously shuttling between nucleus and cytoplasm. NPM1 plays a role in several cellular functions, including ribosome biogenesis and export, centrosome duplication, chromatin remodeling, DNA repair, and response to stress stimuli. Much of the interest in this protein arises from its relevance in human malignancies. NPM1 is frequently overexpressed in solid tumors and is the target of several chromosomal translocations in hematologic neoplasms. Notably, NPM1 has been characterized as the most frequently mutated gene in acute myeloid leukemia (AML). Mutations alter the C‐terminal DNA‐binding domain of the protein and result in its aberrant nuclear export and stable cytosolic localization. In this review, we focus on the leukemia‐associated NPM1 C‐terminal domain and describe its structure, function, and the effect exerted by leukemic mutations. Finally, we discuss the possibility to target NPM1 for the treatment of cancer and, in particular, of AML patients with mutated NPM1 gene.  相似文献   
26.
27.
28.
Rapid kinetic, spectroscopic, and potentiometric studies have been performed on human Theta class glutathione transferase T2-2 to dissect the mechanism of interaction of this enzyme with its natural substrate GSH. Theta class glutathione transferases are considered to be older than Alpha, Pi, and Mu classes in the evolutionary pathway. As in the more recently evolved GSTs, the activation of GSH in the human Theta enzyme proceeds by a forced deprotonation of the sulfhydryl group (pK(a) = 6.1). The thiol proton is released quantitatively in solution, but above pH 6.5, a protein residue acts as an internal base. Unlike Alpha, Mu, and Pi class isoenzymes, the GSH-binding mechanism occurs via a simple bimolecular reaction with k(on) and k(off) values at least hundred times lower (k(on) = (2.7 +/- 0.8) x 10(4) M(-1) s(-1), k(off) = 36 +/- 9 s(-1), at 37 degrees C). Replacement of Arg-107 by alanine, using site-directed mutagenesis, remarkably increases the pK(a) value of the bound GSH and modifies the substrate binding modality. Y107A mutant enzyme displays a mechanism and rate constants for GSH binding approaching those of Alpha, Mu, and Pi isoenzymes. Comparison of available crystallographic data for all these GSTs reveals an unexpected evolutionary trend in terms of flexibility, which provides a basis for understanding our experimental results.  相似文献   
29.
30.
CD95(APO-1/Fas)-mediated apoptosis of bystander uninfected T cells exerts a major role in the HIV-1-mediated CD4+ T-cell depletion. HIV-1 gp120 has a key role in the induction of sensitivity of human lymphocytes to CD95-mediated apoptosis through its interaction with the CD4 receptor. Recently, we have shown the importance of CD95/ezrin/actin association in CD95-mediated apoptosis. In this study, we explored the hypothesis that the gp120-mediated CD4 engagement could be involved in the induction of susceptibility of primary human T lymphocytes to CD95-mediated apoptosis through ezrin phosphorylation and ezrin-to-CD95 association. Here, we show that gp120/IL-2 combined stimuli, as well as the direct CD4 triggering, on human primary CD4(+)T lymphocytes induced an early and stable ezrin activation through phosphorylation, consistent with the induction of ezrin/CD95 association and susceptibility to CD95-mediated apoptosis. Our results provide a new mechanism through which HIV-1-gp120 may predispose resting CD4(+)T cell to bystander CD95-mediated apoptosis and support the key role of ezrin/CD95 linkage in regulating susceptibility to CD95-mediated apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号