首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   5篇
  2021年   5篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
51.
de Marco A 《Nature protocols》2007,2(10):2632-2639
Eight combinations of molecular chaperones (e.g., DnaK/DnaJ/GrpE/ClpB) are co-expressed with the target recombinant protein to compare their effectiveness in improving its soluble yield. This system allows the most complete and rational approach proposed so far to use the chaperone activity for optimizing the host cell folding machinery. Furthermore, a two-step protocol is presented, in which protein synthesis and protein refolding are uncoupled. Molecular chaperones and target protein accumulate in the first growth phase and target protein aggregates are then disaggregated in vivo after the block of protein synthesis. The optimal chaperone combination to maximize the soluble yield of a specific protein remains unpredictable. Therefore, a small-scale purification selection step is useful for screening among expression combinations before scaling-up production. Applying such a strategy, we could increase the solubility of 70% of the tested constructs with yields of up to 42-fold more protein than in controls. The procedure takes 2 d.  相似文献   
52.
The relationship between the plasma membrane bound NAD(P)H-nitratereductase (NR) and a plasma membrane (PM)-bound peroxidase wasinvestigated using highly purified PM vesicles isolated fromcorn roots. The PM-bound NR activity was strongly enhanced byMnCl2 and SHAM, which stimulated peroxidase activity. Sinceboth activities, the NAD(P)H-dependent NR and the peroxidasecompete for NAD(P)H as electron donor, we propose a model inwhich a product of peroxidation is able to offer electrons tothe nitrate reductase in a more reactive form with respect toNAD(P)H.Our hypothesis was confirmed by experiments in which the effectsof inhibitors of peroxidative reactions, catalase, superoxidedismutase, and ascorbate on the PM-bound NR were studied. Resultsindicate that the putative electron donor for nitrate reductioncould be a radicalic species, possibly NAD. Furthermore, sincecytochrome c decreased the activity of the plasma membrane-boundNAD(P)Hdependent NR, cytochrome b557 might be the site of theenzyme accepting electrons from NAD. Our results indicate that the PM environment of the NR may beinvolved in the extent of the membrane associated nitrate reductionand that redox enzymes at the PM, the NAD(P)H-NR and a peroxidase-likeNADH-oxidase, can interact. Key words: Plasma membrane-bound nitrate reductase, peroxidase, Zea mays  相似文献   
53.
54.
Monoclonal antibodies specific for biomarkers expressed on the surface of uveal melanoma (UM) cells would simplify the immune capture and genomic characterization of heterogeneous tumor cells originated from patient‐derived xenografts (PDXs). Antibodies against four independent tumor antigens were isolated by panning a nanobody synthetic library. Such antibodies enabled flow cytometry‐based sorting of distinct cell subpopulations from UM PDXs and to analyze their genomic features. The complexity and specificity of the biochemical and genomic biomarker combinations mirrored the UM tumor polyclonality. The data showed that MUC18 is highly and universally displayed on the surface of UM cells with different genetic background and consequently represents a reliable pan‐biomarker for their identification and purification. In contrast, the other three biomarkers were detected in very variable combinations in UM PDX cells. The availability of the identified nanobodies will be instrumental in developing clone‐specific drug evaluation and rational clinical strategies based on accurate genomic profiling.  相似文献   
55.

Background  

The solubility of recombinant proteins expressed in bacteria is often disappointingly low. Several strategies have been developed to improve the yield and one of the most common strategies is the fusion of the target protein with a suitable partner. Despite several reports on the successful use of each of these carriers to increase the solubility of some recombinant proteins, none of them was always successful and a combinatorial approach seems more efficient to identify the optimal combination for a specific protein. Therefore, the efficiency of an expression system critically depends on the speed in the identification of the optimal combination for the suitable fusion candidate in a screening process. This paper describes a set of expression vectors (pETM) designed for rapid subcloning, expression and subsequent purification using immobilized metal affinity chromatography (IMAC).  相似文献   
56.
57.
The new bacterial vector pETM60 enables the expression of His-tagged recombinant proteins fused to the C-terminus of NusA through a TEV protease recognition sequence. Three sequences coding for two protein domains (Xklp3A and Tep3Ag) and one membrane-bound viral protein (E8R) could not be expressed in a soluble form in bacteria. Their GST-fusions were mostly soluble but quickly degraded during purification. The same sequences cloned in pETM60 were efficiently purified by metal affinity and recovered soluble after the removal of the fusion partner. The NusA-fused constructs enabled to yield 13-20mg of fusion protein per litre of culture and 2.5-5mg of pure protein per litre of culture. Structural analysis indicated that the purified proteins were monodispersed and correctly folded. NusA has been used to raise antibodies that have been successfully used for Western blot and immunoprecipitation of NusA fusion proteins.  相似文献   
58.
We developed a protocol for the fast purification of small proteins and peptides using heat incubation as the first purification step. The proteins are expressed from a new bacterial expression vector (pETM-90) fused to the C-terminus of thermostable Ftr from Methanopyrus kandleri. The vector further contains a 6xHis-tag to allow immobilised metal ion affinity purification and a TEV protease cleavage site to enable the removal of the His-tag and fusion partner. Heat incubation induces the specific denaturation and precipitation of the Escherichia coli proteins but not of the thermostable fusion protein. Using the fusion construct and the heat incubation protocol a number of fusion proteins were purified to near homogeneity. The thermostability was ensured when Ftr had a molecular weight higher than twice the target protein. The obtained purification yields were similar and, in some cases, even higher than the ones obtained by affinity purification with the same Ftr-fusion proteins or the same target proteins fused to other often used partners such as NusA, GST, or DsbA. The protocol does not depend on a specific thermostable protein as was shown by the exchange of Ftr for M. kandleri Mtd. Purification by heat incubation is a fast and inexpensive alternative to chromatographic techniques, particularly suitable for the production of antigenic sequences for which the loss of native structure is not detrimental. We proved that it can be easily automated.  相似文献   
59.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   
60.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号