首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1245篇
  免费   82篇
  2022年   11篇
  2021年   21篇
  2020年   13篇
  2019年   14篇
  2018年   21篇
  2017年   17篇
  2016年   23篇
  2015年   49篇
  2014年   62篇
  2013年   72篇
  2012年   81篇
  2011年   58篇
  2010年   41篇
  2009年   41篇
  2008年   51篇
  2007年   58篇
  2006年   39篇
  2005年   50篇
  2004年   44篇
  2003年   35篇
  2002年   48篇
  2001年   43篇
  2000年   36篇
  1999年   31篇
  1998年   11篇
  1997年   14篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   11篇
  1992年   24篇
  1991年   15篇
  1990年   21篇
  1989年   21篇
  1988年   17篇
  1987年   18篇
  1986年   16篇
  1985年   19篇
  1984年   13篇
  1983年   16篇
  1981年   10篇
  1979年   9篇
  1978年   8篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1973年   8篇
  1967年   6篇
  1966年   8篇
排序方式: 共有1327条查询结果,搜索用时 273 毫秒
111.
112.
Conformational changes that occur upon substrate binding are known to play crucial roles in the recognition and specific aminoacylation of cognate tRNA by glutaminyl-tRNA synthetase. In a previous study we had shown that glutaminyl-tRNA synthetase labeled selectively in a nonessential sulfhydryl residue by an environment sensitive probe, acrylodan, monitors many of the conformational changes that occur upon substrate binding. In this article we have shown that the conformational change that occurs upon tRNA(Gln) binding to glnRS/ATP complex is absent in a noncognate tRNA tRNA(Glu)-glnRS/ATP complex. CD spectroscopy indicates that this cognate tRNA(Gln)-induced conformational change may involve only a small change in secondary structure. The Van't Hoff plot of cognate and noncognate tRNA binding in the presence of ATP is similar, suggesting similar modes of interaction. It was concluded that the cognate tRNA induces a local conformational change in the synthetase that may be one of the critical elements that causes enhanced aminoacylation of the cognate tRNA over the noncognate ones.  相似文献   
113.
114.
115.
116.
Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.  相似文献   
117.
The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.  相似文献   
118.
Fibrinogen and β-amyloid (Aβ) peptide independently form ordered aggregates but in combination, they form disordered structures which are resistant to fibrinolytic enzymes like plasmin and cause severity in cerebral amyloid angiopathy (CAA). A novel enzyme of 31.3 kDa has been isolated from the root of the medicinal plant Aristolochia indica that showed fibrinolytic as well as fibrin-Aβ co-aggregate destabilizing properties. This enzyme is functionally distinct from plasmin. Thrombolytic action of the enzyme was demonstrated in rat model. The potency of the plant enzyme in degrading fibrin and fibrin-plasma protein (Aβ, human serum albumin, lysozyme, transthyretin and fibronectin) co-aggregates was demonstrated by atomic force microscopy, scanning electron microscopy and confocal microscopy that showed better potency of the plant enzyme as compared to plasmin. Moreover, the plant enzyme inhibited localization of the co-aggregate inside SH-SY5Y human neuroblastoma cells and also co-aggregate induced cytotoxicity. Plasmin was inefficient in this respect. In the background of limited options for fragmentation of these co-aggregates, the plant enzyme may appear as a potential proteolytic enzyme.  相似文献   
119.
120.
We show that the number of segregating sites is a sufficient statistic for the scaled mutation parameter (θ) in the limit as the number of sites tends to infinity and there is free recombination between sites. We assume that the mutation parameter at each site tends to zero such than the total mutation parameter (θ) is constant in the limit. Our results show that Watterson’s estimator is the maximum likelihood estimator in this case, but that it estimates a composite parameter which is different for different mutation models. Some of our results hold when recombination is limited, because Watterson’s estimator is an unbiased, method-of-moments estimator regardless of the recombination rate. The quantity it estimates depends on the details of how mutations occur at each site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号