首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   12篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   10篇
  2013年   8篇
  2012年   17篇
  2011年   9篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   12篇
  2006年   5篇
  2005年   15篇
  2004年   12篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1980年   2篇
  1977年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
121.
122.
Selective autophagy has been extensively studied in various organisms, but knowledge regarding its functions in plants, particularly in organelle turnover, is limited. We have recently discovered ATG8-INTERACTING PROTEIN1 (ATI1) from Arabidopsis thaliana and showed that following carbon starvation it is localized on endoplasmic reticulum (ER)-associated bodies that are subsequently transported to the vacuole. Here, we show that following carbon starvation ATI1 is also located on bodies associating with plastids, which are distinct from the ER ATI bodies and are detected mainly in senescing cells that exhibit plastid degradation. Additionally, these plastid-localized bodies contain a stroma protein marker as cargo and were observed budding and detaching from plastids. ATI1 interacts with plastid-localized proteins and was further shown to be required for the turnover of one of them, as a representative. ATI1 on the plastid bodies also interacts with ATG8f, which apparently leads to the targeting of the plastid bodies to the vacuole by a process that requires functional autophagy. Finally, we show that ATI1 is involved in Arabidopsis salt stress tolerance. Taken together, our results implicate ATI1 in autophagic plastid-to-vacuole trafficking through its ability to interact with both plastid proteins and ATG8 of the core autophagy machinery.  相似文献   
123.
We study the Brownian motion of an assembly of mobile inclusions embedded in a fluid membrane. The motion includes the dispersal of the assembly, accompanied by the diffusion of its center of mass. Usually, the former process is much faster than the latter because the diffusion coefficient of the center of mass is inversely proportional to the number of particles. However, in the case of membrane inclusions, we find that the two processes occur on the same timescale, thus significantly prolonging the lifetime of the assembly as a collectively moving object. This effect is caused by the quasi-two-dimensional membrane flows, which couple the motions of even the most remote inclusions in the assembly. The same correlations also cause the diffusion coefficient of the center of mass to decay slowly with time, resulting in weak subdiffusion. We confirm our analytical results by Brownian dynamics simulations with flow-mediated correlations. The effect reported here should have implications for the stability of nanoscale membrane heterogeneities.  相似文献   
124.
It has been shown that the population average blood glucose level of diabetes patients shows seasonal variation, with higher levels in the winter than summer. However, seasonality in the population averages could be due to a tendency in the individual to seasonal variation, or alternatively due to occasional high winter readings (spiking), with different individuals showing this increase in different winters. A method was developed to rule out spiking as the dominant pattern underlying the seasonal variation in the population averages. Three years of data from three community-serving laboratories in Israel were retrieved. Diabetes patients (N?=?3243) with a blood glucose result every winter and summer over the study period were selected. For each individual, the following were calculated: seasonal average glucose for all winters and summers over the period of study (2006-2009), winter-summer difference for each adjacent winter-summer pair, and average of these five differences, an index of the degree of spikiness in the pattern of the six seasonal levels, and number of times out of five that each winter-summer difference was positive. Seasonal population averages were examined. The distribution of the individual's differences between adjacent seasons (winter minus summer) was examined and compared between subgroups. Seasonal population averages were reexamined in groups divided according to the index of the degree of spikiness in the individual's glucose pattern over the series of seasons. Seasonal population averages showed higher winter than summer levels. The overall median winter-summer difference on the individual level was 8?mg/dL (0.4?mmol/L). In 16.9% (95% confidence interval [CI]: 15.6-18.2%) of the population, all five winter-summer differences were positive versus 3.6% (95% CI: 3.0-4.2%) where all five winter-summer differences were negative. Seasonal variation in the population averages was not attenuated in the group having the lowest spikiness index; comparison of the distributions of the winter-summer differences in the high-, medium-, and low-spikiness groups showed no significant difference (p?=?.213). Therefore, seasonality in the population average blood glucose in diabetes patients is not just the result of occasional high measurements in different individuals in different winters, but presumably reflects a general periodic tendency in individuals for winter glucose levels to be higher than summer levels.  相似文献   
125.
126.
Glucocorticoids (GCs), such as prednisolone (PRED), are widely prescribed anti-inflammatory drugs, but their use may induce glucose intolerance and diabetes. GC-induced beta cell dysfunction contributes to these diabetogenic effects through mechanisms that remain to be elucidated. In this study, we hypothesized that activation of the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress could be one of the underlying mechanisms involved in GC-induced beta cell dysfunction. We report here that PRED did not affect basal insulin release but time-dependently inhibited glucose-stimulated insulin secretion in INS-1E cells. PRED treatment also decreased both PDX1 and insulin expression, leading to a marked reduction in cellular insulin content. These PRED-induced detrimental effects were found to be prevented by prior treatment with the glucocorticoid receptor (GR) antagonist RU486 and associated with activation of two of the three branches of the UPR. Indeed, PRED induced a GR-mediated activation of both ATF6 and IRE1/XBP1 pathways but was found to reduce the phosphorylation of PERK and its downstream substrate eIF2α. These modulations of ER stress pathways were accompanied by upregulation of calpain 10 and increased cleaved caspase 3, indicating that long term exposure to PRED ultimately promotes apoptosis. Taken together, our data suggest that the inhibition of insulin biosynthesis by PRED in the insulin-secreting INS-1E cells results, at least in part, from a GR-mediated impairment in ER homeostasis which may lead to apoptotic cell death.  相似文献   
127.
The venerid clam Chamelea gallina is a popular and economic foodstuff around the Mediterranean countries especially in Italy, Spain, and France. The aim of this study is to evaluate the nutritional quality of striped venus of Southern Marmara. Samples were harvested seasonally at five stations and analyzed to determine meat yield, proximate, and elemental composition. According to the results, meat yield ranged from 20.24% to 29.94%. Means of water, protein, lipid, and ash content were 67%, 10.12%, 2.57%, and 1.66%, respectively. The mean concentrations (mg/kg wet weight) of elements in tissues are as follows: B: 2.37–4.24; Cr: 0–0.76; Co: 0–0.43; Cu: 0.71–5.30; Mn: 0.30–5.94; Zn: 13.08–77.76; Ni: 0–1.22; Fe: 2.46–114.22; Al: 1.23–75.49; Pb: 0.18–3.24; Ba: 0.66–15.97; Cd: 0.04–0.69. Among the reported metal levels, only Pb and Zn in two stations exceeded the maximum critical concentrations enforced by Turkish legislation and European Commission. Therefore, we report that striped venus from Southern Marmara Sea, in general, are safe for human consumption; nonetheless, Pb and Zn levels should be closely monitored in the future.  相似文献   
128.
DNA oligonucleotides (ODN) applied to an organism are known to modulate the innate and adaptive immune system. Previous studies showed that a CpG-containing ODN (CpG-1-PTO) and interestingly, also a non-CpG-containing ODN (nCpG-5-PTO) suppress inflammatory markers in skin. In the present study it was investigated whether these molecules also influence cell apoptosis. Here we show that CpG-1-PTO, nCpG-5-PTO, and also natural DNA suppress the phosphorylation of PKB/Akt in a cell-type-specific manner. Interestingly, only epithelial cells of the skin (normal human keratinocytes, HaCaT and A-431) show a suppression of PKB/Akt. This suppressive effect depends from ODN lengths, sequence and backbone. Moreover, it was found that TGFα-induced levels of PKB/Akt and EGFR were suppressed by the ODN tested. We hypothesize that this suppression might facilitate programmed cell death. By testing this hypothesis we found an increase of apoptosis markers (caspase 3/7, 8, 9, cytosolic cytochrome c, histone associated DNA fragments, apoptotic bodies) when cells were treated with ODN in combination with low doses of staurosporin, a well-known pro-apoptotic stimulus. In summary the present data demonstrate DNA as a modulator of apoptosis which specifically targets skin epithelial cells.  相似文献   
129.
Antagonism of the adenosine A2a receptor offers great promise in the treatment of Parkinson’s disease. In the course of exploring pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine A2A antagonists, which led to clinical candidate SCH 420814, we prepared 1,2,4-triazolo[1,5-c]pyrimidines with potent and selective (vs A1) A2a antagonist activity, including oral activity in the rat haloperidol-induced catalepsy model. Structure–activity relationships and plasma levels are described for this series.  相似文献   
130.
Autophagy is a mechanism used for the transport of macromolecules to the vacuole for degradation. It can be either non-selective or selective, resulting from the specific binding of target proteins to Atg8, an essential autophagy-related protein. Nine Atg8 homologs exist in the model plant Arabidopsis thaliana, suggesting possible different roles for different homologs. In a previous report published in the Plant Cell, our group identified two plant-specific proteins, termed ATI1 and ATI2, which bind Atg8f, as a representative of the nine Atg8 homologs. The proteins were shown to associate with novel starvation-induced bodies that move on the ER network and reach the lytic vacuole. Altered expression level of the proteins was also shown to affect the ability of seeds to germinate in the presence of the germination inhibiting hormone ABA. In the present addendum article, we demonstrate that, in addition to Atg8f, ATI1 binds Atg8h, an Atg8 homolog from a different sub-family, indicating that ATI1 is not a specific target of Atg8f.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号