首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   3篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2014年   3篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   2篇
  2009年   5篇
  2008年   1篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1990年   1篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
11.

Background

Phospholipase D (PLD) catalyzes conversion of phosphatidylcholine into choline and phosphatidic acid, leading to a variety of intracellular signal transduction events. Two classical PLDs, PLD1 and PLD2, contain phosphatidylinositide-binding PX and PH domains and two conserved His-x-Lys-(x)4-Asp (HKD) motifs, which are critical for PLD activity. PLD4 officially belongs to the PLD family, because it possesses two HKD motifs. However, it lacks PX and PH domains and has a putative transmembrane domain instead. Nevertheless, little is known regarding expression, structure, and function of PLD4.

Methodology/Principal Findings

PLD4 was analyzed in terms of expression, structure, and function. Expression was analyzed in developing mouse brains and non-neuronal tissues using microarray, in situ hybridization, immunohistochemistry, and immunocytochemistry. Structure was evaluated using bioinformatics analysis of protein domains, biochemical analyses of transmembrane property, and enzymatic deglycosylation. PLD activity was examined by choline release and transphosphatidylation assays. Results demonstrated low to modest, but characteristic, PLD4 mRNA expression in a subset of cells preferentially localized around white matter regions, including the corpus callosum and cerebellar white matter, during the first postnatal week. These PLD4 mRNA-expressing cells were identified as Iba1-positive microglia. In non-neuronal tissues, PLD4 mRNA expression was widespread, but predominantly distributed in the spleen. Intense PLD4 expression was detected around the marginal zone of the splenic red pulp, and splenic PLD4 protein recovered from subcellular membrane fractions was highly N-glycosylated. PLD4 was heterologously expressed in cell lines and localized in the endoplasmic reticulum and Golgi apparatus. Moreover, heterologously expressed PLD4 proteins did not exhibit PLD enzymatic activity.

Conclusions/Significance

Results showed that PLD4 is a non-PLD, HKD motif-carrying, transmembrane glycoprotein localized in the endoplasmic reticulum and Golgi apparatus. The spatiotemporally restricted expression patterns suggested that PLD4 might play a role in common function(s) among microglia during early postnatal brain development and splenic marginal zone cells.  相似文献   
12.
13.
Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism.  相似文献   
14.
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.  相似文献   
15.
Platelet activating factor (PAF) is a newly discovered inflammatory chemical mediator, which was reported to play a pivotal role in various types of shock. There is also a great possibility that PAF plays an important role in the shock caused by hepatic inflow occlusion. In the present study, the effect of CV6209, a PAF antagonist, on the shock caused by the occlusion was investigated. Intravenous 3 micrograms/kg of PAF caused hypotension in Wistar rats (n=6), and pretreatment with intravenous 3 mg/kg of CV6209 significantly (p less than 0.01) prevented the hypotension (n=6). Forty-five minutes of hepatic inflow occlusion caused hypotension in rats during the occlusion period, and the hypotension continued even after restoration of blood flow in control group (pretreated with saline i.v. only, n=5). In contrast, this hypotension was significantly (p less than 0.01) reversed in PAF antagonist group (pretreated with 3 mg/kg of CV6209 i.v., n=5). In sham-operated rats (n=6), arterial pressure remained unchanged and not hypotensive during the monitoring period. The survival rate of rats 90 minutes after declamp was 30% in control group (n=20), and that was significantly (p less than 0.05) improved to be 65% in PAF antagonist group (n=20). In conclusion, PAF plays an important role in the shock and death caused by temporary hepatic inflow occlusion, and a PAF antagonist could be a therapeutic drug against temporary hepatic inflow occlusion.  相似文献   
16.
The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (>4000 mm) age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on the same gradients, with peak values at the 20,000–150,000 yr old sites, and that foliar concentrations were consistently lower under the wet than under the mesic conditions. Our objectives were to assay the influences of soil aging and moisture on forest development using the patterns and rates of species displacements. The canopies at all sites were dominated by Metrosideros polymorpha. Mean height and dbh of upper canopy Metrosideros trees increased from the youngest site to peak values at the 2100–9000 yr sites, and successively declined to older sites. A detrended correspondence analysis applied to mean species cover values revealed that significant variation among sites occurred only on one axis (axis 1), for both soil-age gradients. Sample scores along axis 1 were perfectly correlated with soil age on the mesic gradient, and significantly correlated on the wet gradient. Higher rainfall appeared to be responsible for the higher rates of species turnover on the wet gradient probably through faster rock weathering and greater leaching of soil elements. We concluded that the changes in species cover values and size of the canopy species was a reflection of the changing pattern of nutrient availability associated with soil aging.  相似文献   
17.
18.
19.
The vegetation on Yakushima Island, Japan, grows on soils derived from Akahoya volcanic ash, released from the Kikai Caldera about 7300 years ago. The eruption was devastating and it is believed that primary succession and soil formation reinitiated across all altitudes at this point. We hypothesize that the concentrations of soil total phosphorus (P) and labile P fractions increase with increasing altitude because the soil formation has progressed less in upslope areas as a result of the cooler temperature and because of the ample P source of the volcanic ash. Conversely, we hypothesize that the concentration of soil inorganic nitrogen (N) decreases with increasing altitude. Available soil P and N would result in increasing P limitation downslope and increasing N limitation upslope, respectively. We studied soil P fractions and soil inorganic N, and P- and N-use efficiencies of the seven forests on Yakushima along an elevation gradient (170–1550 m a.s.l.). Contrary to our hypotheses, soil total P, labile soil P fractions, and inorganic N decreased with increasing altitude. The P- and N-use efficiencies of the forests were negatively correlated with the concentration of soil total active P (total P minus occluded P) and inorganic N, respectively. We suggest that progressive soil acidity and slower decomposition under cooler and wetter environments upslope must have dissolved the P contained in volcanic ash and accelerated P leaching. Forest ecosystems on Yakushima that show a distinct altitudinal zonation are, therefore, characterized by increasing P and N shortage with increasing altitude.  相似文献   
20.
Summary Mineralization of native N was curtailed by addition of carbon sources in all soils tested. A readily available energy source, sucrose, accelerated and increased the immobilization of native as well as added N more than a slowly available energy source, sugar cane bagasse. Addition of N as ammonium sulfate increased CO2 production in only one out of five soils when no energy source was added. With energy source addition, N addition enhanced CO2 production in most soils. Without any treatment, the immobilization of added N was related to the C:N ratio of the soil; maximum immobilization occurred in the soil with the widest C:N ratio.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号