首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   16篇
  156篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   6篇
  2014年   6篇
  2013年   11篇
  2012年   14篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2003年   8篇
  2002年   10篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有156条查询结果,搜索用时 0 毫秒
61.
62.
63.
Today, global attention is focused on two influenza virus strains: the current pandemic strain, swine origin influenza virus (H1N1-2009), and the highly pathogenic avian influenza virus, H5N1. At present, the infection caused by the H1N1-2009 is moderate, with mortality rates of less <1%. In contrast, infection with the H5N1 virus resulted in high mortality rates, and ca. 60% of the infected patients succumb to the infection. Thus, one of the world greatest concerns is that the H5N1 virus will evolve to allow an efficient human infection and human-to-human transmission. Natural killer (NK) cells are one of the innate immune components playing an important role in fighting against influenza viruses. One of the major NK activating receptors involved in NK cell cytotoxicity is NKp46. We previously demonstrated that NKp46 recognizes the hemagglutinin proteins of B and A influenza virus strains. Whether NKp46 could also interact with H1N1-2009 virus or with the avian influenza virus is still unknown. We analyzed the immunological properties of both the avian and the H1N1-2009 influenza viruses. We show that NKp46 recognizes the hemagglutinins of H1N1-2009 and H5 and that this recognition leads to virus killing both in vitro and in vivo. However, importantly, while the swine H1-NKp46 interactions lead to the direct killing of the infected cells, the H5-NKp46 interactions were unable to elicit direct killing, probably because the NKp46 binding sites for these two viruses are different.Natural killer (NK) cells, which comprise 5 to 15% of peripheral blood lymphocytes, are a key frontline defense against a number of pathogens, including intracellular bacteria, parasites, and most importantly with respect to the present study, viruses (6, 40). The antiviral mechanisms by which NK cells operate include both cytotoxic activity and cytokine/chemokine secretion (21). The NK killing activity is executed by numerous receptors, including NKG2D, NKp80, CD16, and the natural cytotoxic receptors (NCRs): NKp30, NKp44, and NKp46 (7, 10, 25).Although the cellular ligands for NKG2D were identified (31, 38), the identity of several of the cellular ligands for the human NCRs is still unknown, except for BAT3 and B7-H6, which are ligands for NKp30 (8, 30). In contrast, viral ligands were identified for the NCRs, and we demonstrated that pp65 of HCMV interacts with NKp30 (3) and that various influenza virus hemagglutinins (HAs) are ligands for the NKp44 and NKp46 receptors (5, 22). Supporting these observations, it was recently shown that the HA-neuraminidase of Newcastle disease virus could also interact with NKp46 and NKp44 but not with NKp30 (17). Furthermore, we have shown in vivo that in the absence of NCR1 (the mouse homologue of NKp46), A/PR8 influenza virus infection is lethal (14).Human influenza virus (H1 and H3 subtype) infections pose a major threat to the entire population, as exemplified by the three major influenza pandemics that occurred during the 20th century. The Asian (A/H2N2) in 1957 to 1958 and the Hong Kong (A/H3N2) pandemics in 1968 to 1969 resulted in the deaths of 1 to 2 million people and the 1918 “Spanish flu” (A/H1N1) pandemic killed around 50 million people (18). At present, the worldwide concern regarding influenza pandemics concentrates mainly on two viruses: the A/H1N1 swine origin influenza virus (H1N1-2009), which currently causes only a moderate pandemic (the mortality rates are ca. 1%) but is more pathogenic than a regular seasonal influenza virus (19, 26, 27), and the avian influenza virus carrying the unique H5 HA (20). The avian influenza virus is quite deadly and, although it remains a zoonotic infection, ca. 60% of infected humans died due to the infection (28).The unique properties of the H5 protein of the avian influenza virus are one of the main reasons for the virulence of the virus. The H5 of the avian influenza virus binds to cell surface glycoproteins or glycolipids containing terminal sialyl-galactosyl residues linked by 2-3-linkage [Neu5Ac(α2-3)Gal] that are found in the human conjunctiva and ciliated portion of the respiratory columnar epithelium (33). In contrast, human viruses (including all three strains that caused the pandemics described above and the H1N1-2009) bind to receptors that mostly contain terminal 2-6-linked sialyl-galactosyl moieties [Neu5Ac(α2-6)Gal]. Such glycosylations are predominant on epithelial cells in the nasal mucosa, paranasal sinuses, pharynx, trachea, and bronchi (33, 37). It has been suggested that the lack of human-to-human transmission of avian influenza viruses is due to their α2,3-SA receptor binding preference, and the concern is that genetic changes in H5 might alter its preference from α2,3-SA to α2,6-SA, allowing human-to-human transmission.In our previous studies (4, 22) we showed that the interaction between NKp46 and influenza virus HAs depends on the sialylation of the NKp46 receptor. We further demonstrated that the sialic acid residues, which are linked via α2,6 to the threonine 225 residue of NKp46, are crucial for the NKp46 interactions with the various influenza virus HAs (4).We show that, both in vitro and in vivo, the killing of H1N1-2009-infected cells is correlated with the degree of NKp46 binding. Surprisingly, we observed that although NKp46 efficiently recognized the avian H5 HA, such interactions were unable to elicit the direct killing of the infected cells. By using mutagenesis analysis experiments and killing assays we demonstrate that NKp46 interacts with H1 and H5 at distinct sites, since we show that the sugar carrying residue at position 225 is crucial for the NKp46-H1N1-2009 interactions, whereas the interaction of H5 with NKp46 depends on both residues 216 and 225.  相似文献   
64.
In view of the proposed central role of LDL oxidation in atherogenesis and the established role of HDL in reducing the risk of atherosclerosis, several studies were undertaken to investigate the possible effect of HDL on LDL peroxidation. Since these investigations yielded contradictory results, we have conducted systematic kinetic studies on the oxidation in mixtures of HDL and LDL induced by different concentrations of copper, 2, 2'-azo bis (2-amidinopropane) hydrochloride (AAPH) and myeloperoxidase (MPO). These studies revealed that oxidation of LDL induced either by AAPH or MPO is inhibited by HDL under all the studied conditions, whereas copper-induced oxidation of LDL is inhibited by HDL at low copper/lipoprotein ratio but accelerated by HDL at high copper/lipoprotein ratio. The antioxidative effects of HDL are only partially due to HDL-associated enzymes, as indicated by the finding that reconstituted HDL, containing no such enzymes, inhibits peroxidation induced by low copper concentration. Reduction of the binding of copper to LDL by competitive binding to the HDL also contributes to the antioxidative effect of HDL. The acceleration of copper-induced oxidation of LDL by HDL may be attributed to the hydroperoxides formed in the "more oxidizable" HDL, which migrate to the "less oxidizable" LDL and enhance the oxidation of the LDL lipids induced by bound copper. This hypothesis is supported by the results of experiments in which native LDL was added to oxidizing lipoprotein at different time points. When the native LDL was added prior to decomposition of the hydroperoxides in the oxidizing lipoprotein, the lag preceding oxidation of the LDL was much shorter than the lag observed when the native LDL was added at latter stages, after the level of hydroperoxides became reduced due to their copper-catalyzed decomposition. The observed dependence of the interrelationship between the oxidation of HDL and LDL on the oxidative stress should be considered in future investigations regarding the oxidation of lipoprotein mixtures.  相似文献   
65.
Flexible peptides that fold upon binding to another protein molecule mediate a large number of regulatory interactions in the living cell and may provide highly specific recognition modules. We present Rosetta FlexPepDock ab-initio, a protocol for simultaneous docking and de-novo folding of peptides, starting from an approximate specification of the peptide binding site. Using the Rosetta fragments library and a coarse-grained structural representation of the peptide and the receptor, FlexPepDock ab-initio samples efficiently and simultaneously the space of possible peptide backbone conformations and rigid-body orientations over the receptor surface of a given binding site. The subsequent all-atom refinement of the coarse-grained models includes full side-chain modeling of both the receptor and the peptide, resulting in high-resolution models in which key side-chain interactions are recapitulated. The protocol was applied to a benchmark in which peptides were modeled over receptors in either their bound backbone conformations or in their free, unbound form. Near-native peptide conformations were identified in 18/26 of the bound cases and 7/14 of the unbound cases. The protocol performs well on peptides from various classes of secondary structures, including coiled peptides with unusual turns and kinks. The results presented here significantly extend the scope of state-of-the-art methods for high-resolution peptide modeling, which can now be applied to a wide variety of peptide-protein interactions where no prior information about the peptide backbone conformation is available, enabling detailed structure-based studies and manipulation of those interactions.  相似文献   
66.
Palty R  Raveh A  Kaminsky I  Meller R  Reuveny E 《Cell》2012,149(2):425-438
Store operated calcium entry (SOCE) is a principal cellular process by which cells regulate basal calcium, refill intracellular Ca(2+) stores, and execute a wide range of specialized activities. STIM and Orai proteins have been identified as the essential components enabling the reconstitution of Ca(2+) release-activated Ca(2+) (CRAC) channels that mediate SOCE. Here, we report the molecular identification of SARAF as a negative regulator of SOCE. Using?heterologous expression, RNAi-mediated silencing and site directed mutagenesis combined with electrophysiological, biochemical and imaging techniques we show that SARAF is an endoplasmic reticulum membrane resident protein that associates with STIM to facilitate slow Ca(2+)-dependent inactivation of SOCE. SARAF plays a key role in shaping cytosolic Ca(2+) signals and determining the content of the major intracellular Ca(2+) stores, a role that is likely to be important in protecting cells from Ca(2+) overfilling.  相似文献   
67.
68.
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号