首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2042篇
  免费   178篇
  国内免费   2篇
  2222篇
  2023年   9篇
  2022年   18篇
  2021年   71篇
  2020年   24篇
  2019年   45篇
  2018年   46篇
  2017年   35篇
  2016年   67篇
  2015年   109篇
  2014年   111篇
  2013年   124篇
  2012年   161篇
  2011年   164篇
  2010年   108篇
  2009年   91篇
  2008年   124篇
  2007年   116篇
  2006年   100篇
  2005年   106篇
  2004年   82篇
  2003年   85篇
  2002年   81篇
  2001年   25篇
  2000年   28篇
  1999年   25篇
  1998年   26篇
  1997年   16篇
  1996年   8篇
  1995年   14篇
  1994年   13篇
  1993年   12篇
  1992年   19篇
  1991年   20篇
  1990年   17篇
  1989年   16篇
  1988年   13篇
  1987年   8篇
  1986年   7篇
  1985年   10篇
  1984年   6篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1977年   10篇
  1976年   3篇
  1975年   4篇
  1973年   6篇
  1972年   7篇
  1971年   3篇
  1967年   2篇
排序方式: 共有2222条查询结果,搜索用时 15 毫秒
71.
The human platelet integrin GPIIb/IIIa (228 kDa), a Ca-dependent heterodimer formed by the IIb subunit (GPIIb, 136 kDa) and the 3 subunit (GPIIIa, 92 kDa), serves as the fibrinogen receptor at the surface of activated platelets. The degree of dissociation of the GPIIb/IIIa heterodimer (s°20 *, 8.9 S) into its constituent glycoproteins (GPIIb, 5.8 S; and GPIIIa, 3.9 S) has been assessed by analytical ultracentrifugation in Triton X100 buffers, and its Ca2+- and temperature-dependence correlated with Ca2+-binding to GPIIb/IIIa and its temperature dependence. At 21°C half-maximal dissociation of GPIIb/IIIa occurs at 5.5 ± 2.5 × 10–8 M Ca2+, very close to the dissociation constant of the high affinity Ca-binding site of GPIIb/IIIa (Kd1 8 ± 3 × 10–8 M) (Rivas and González-Rodríguez, 1991) and much lower than the Kd of the 3.4 medium affinity Ca-binding sites (Kd2 4 ± 1.5 × 10–5 M), which seems to demonstrate that the stability of the heterodimer in solution at room temperature is regulated by the degree of saturation of the high-affinity Ca-binding site. At 4°C, the stability of the heterodimer is apparently Ca2+-independent, while at room and physiological temperatures (15–37°C) the degree of dissociation of the heterodimer is regulated by the degree of dissociation of the high- and medium-affinity Ca-binding sites, respectively. On increasing the Ca2+ concentration up to 1 × 10–4 M after dissociation in Triton X100 solutions, the reconstitution of the GPIIb/IIIa heterodimer depends on the time and temperature at which the dissociated heterodimer was maintained, being almost complete within the first 5–10 min at 37°C and within the first 1–2 h at 21°C. After this time, a time- and temperature-dependent irreversible autoassociation of GPIIb (covalent) and GPIIIa (non-covalent) occurs, which hinders both the isolation of permanently stable monoamers of GPIIb and GPIIIa and the reconstitution of the GPIIb/IIIa heterodimer in Triton X100 solutions. Abbreviations: GPIIb, GPIIIa, and GPIIb/IIIa, glycoprotein IIb, IIIa, and the heterodimer formed by them, respectively; s°20 *, the sedimentation coefficient of the glycoprotein-detergent complexes determined at 20°C, after extrapolation to zero-glycoprotein concentration Offprint requests to: J. González-Rodríguez  相似文献   
72.
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.  相似文献   
73.
We investigated the role of Ca2+ in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca2+. Nifedipine (Nife) inhibited both Hypo-induced Ca2+ and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca2+ influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca2+ increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.  相似文献   
74.
75.
76.
Mutations in the parkin gene result in an autosomal recessive juvenile-onset form of Parkinson's disease. As an E3 ubiquitin-ligase, parkin promotes the attachment of ubiquitin onto specific substrate proteins. Defects in the ubiquitination of parkin substrates are therefore believed to lead to neurodegeneration in Parkinson's disease. Here, we identify the PSD-95/Discs-large/Zona Occludens-1 (PDZ) protein PICK1 as a novel parkin substrate. We find that parkin binds PICK1 via a PDZ-mediated interaction, which predominantly promotes PICK1 monoubiquitination rather than polyubiquitination. Consistent with monoubiquitination and recent work implicating parkin in proteasome-independent pathways, parkin does not promote PICK1 degradation. However, parkin regulates the effects of PICK1 on one of its other PDZ partners, the acid-sensing ion channel (ASIC). Overexpression of wild-type, but not PDZ binding- or E3 ubiquitin-ligase-defective parkin abolishes the previously described, protein kinase C-induced, PICK1-dependent potentiation of ASIC2a currents in non-neuronal cells. Conversely, the loss of parkin in hippocampal neurons from parkin knockout mice unmasks prominent potentiation of native ASIC currents, which is normally suppressed by endogenous parkin in wild-type neurons. Given that ASIC channels contribute to excitotoxicity, our work provides a mechanism explaining how defects in parkin-mediated PICK1 monoubiquitination could enhance ASIC activity and thereby promote neurodegeneration in Parkinson's disease.  相似文献   
77.
Binding of the complement regulatory protein, factor H, to C-reactive protein has been reported and implicated as the biological basis for association of the H402 polymorphic variant of factor H with macular degeneration. Published studies utilize solid-phase or fluid-phase binding assays to show that the factor H Y402 variant binds C-reactive protein more strongly than H402. Diminished binding of H402 variant to C-reactive protein in retinal drusen is posited to permit increased complement activation, driving inflammation and pathology. We used well validated native human C-reactive protein and pure factor H Y402H variants to test interactions. When factor H variants were incubated with C-reactive protein in the fluid phase at physiological concentrations, no association occurred. When C-reactive protein was immobilized on plastic, either non-specifically by adsorption in the presence of Ca(2+) to maintain its native fold and pentameric subunit assembly or by specific Ca(2+)-dependent binding to immobilized natural ligands, no specific binding of either factor H variant from the fluid phase was observed. In contrast, both factor H variants reproducibly bound to C-reactive protein immobilized in the absence of Ca(2+), conditions that destabilize the native fold and pentameric assembly. Both factor H variants strongly bound C-reactive protein that was denatured by heat treatment before immobilization, confirming interaction with denatured but not native C-reactive protein. We conclude that the reported binding of factor H to C-reactive protein results from denaturation of the C-reactive protein during immobilization. Differential binding to C-reactive protein, thus, does not explain association of the Y402H polymorphism with macular degeneration.  相似文献   
78.
79.
Uridine 5′-diphosphate-glucose (UDP-Glc) is transported into the lumen of the Golgi cisternae, where is used for polysaccharide biosynthesis. When Golgi vesicles were incubated with UDP-[3H]Glc, [3H]Glc was rapidly transferred to endogenous acceptors and UDP-Glc was undetectable in Golgi vesicles. This result indicated that a uridine-containing nucleotide was rapidly formed in the Golgi vesicles. Since little is known about the fate of the nucleotide derived from UDP-Glc, we analyzed the metabolism of the nucleotide moiety of UDP-Glc by incubating Golgi vesicles with [α-32P]UDP-Glc, [β-32P]UDP-Glc, and [3H]UDP-Glc and identifying the resulting products. After incubation of Golgi vesicles with these radiolabeled substrates we could detect only uridine 5′-monophosphate (UMP) and inorganic phosphate (Pi). UDP could not be detected, suggesting a rapid hydrolysis of UDP by the Golgi UDPase. The by-products of UDP hydrolysis, UMP and Pi, did not accumulate in the lumen, indicating that they were able to exit the Golgi lumen. The exit of UMP was stimulated by UDP-Glc, suggesting the presence of a putative UDP-Glc/UMP antiporter in the Golgi membrane. However, the exit of Pi was not stimulated by UDP-Glc, suggesting that the exit of Pi occurs via an independent membrane transporter.  相似文献   
80.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号