首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1297篇
  免费   99篇
  国内免费   1篇
  1397篇
  2023年   7篇
  2022年   12篇
  2021年   53篇
  2020年   20篇
  2019年   36篇
  2018年   31篇
  2017年   22篇
  2016年   39篇
  2015年   71篇
  2014年   74篇
  2013年   85篇
  2012年   112篇
  2011年   108篇
  2010年   75篇
  2009年   62篇
  2008年   81篇
  2007年   73篇
  2006年   64篇
  2005年   73篇
  2004年   48篇
  2003年   56篇
  2002年   58篇
  2001年   6篇
  2000年   9篇
  1999年   15篇
  1998年   12篇
  1997年   10篇
  1996年   2篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   10篇
  1990年   6篇
  1989年   6篇
  1988年   7篇
  1986年   3篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1963年   1篇
  1933年   1篇
排序方式: 共有1397条查询结果,搜索用时 15 毫秒
21.

Background

F-spondin is a multi-domain extracellular matrix (ECM) protein and a contact-repellent molecule that directs axon outgrowth and cell migration during development. The reelin_N domain and the F-spondin domain (FS domain) comprise a proteolytic fragment that interacts with the cell membrane and guides the projection of commissural axons to floor plate. The FS domain is found in F-spondins, mindins, M-spondin and amphiF-spondin.

Results

We present the crystal structure of human F-spondin FS domain at 1.95Å resolution. The structure reveals a Ca2+-binding C2 domain variant with an 8-stranded antiparallel β-sandwich fold. Though the primary sequences of the FS domains of F-spondin and mindin are less than 36% identical, their overall structures are very similar. The unique feature of F-spondin FS domain is the presence of three disulfide bonds associated with the N- and C-termini of the domain and a highly conserved N-linked glycosylation site. The integrin-binding motif found in mindin is not conserved in the F-spondin FS domain.

Conclusion

The structure of the F-spondin FS domain completes the structural studies of the multiple-domain ECM molecule. The homology of its core structure to a common Ca2+- and lipid-binding C2 domain suggests that the F-spondin FS domain may be responsible for part of the membrane targeting of F-spondin in its regulation of axon development. The structural properties of the FS domain revealed in this study pave the way for further exploration into the functions of F-spondin.  相似文献   
22.
Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).  相似文献   
23.
Plant Cell, Tissue and Organ Culture (PCTOC) - A biotechnological system for the production of plants biomass and phenylpropanoids of maqui was developed in photomixotrophic TIBs. The in vitro...  相似文献   
24.
The contiguous trbJ and trbK genes of RP1 were cloned individually to study their effects. Surface exclusion was conferred only by trbK and only when gene dosage was high or when trbJ was also present in cis or in trans. This suggests that in the low-copy-number RP1, surface exclusion is due to a two-gene interaction in which trbK is the dominant partner. Among surface exclusion genes, trbJ is novel in yielding a periplasmic product that is also essential for conjugal transfer. This cellular location and the disturbed membrane function that accompanies TrbJ-processing probably accounts for the retarded growth caused by trbJ+ clones in Pseudomonas aeruginosa strain PAO.  相似文献   
25.
Journal of Plant Growth Regulation - This study evaluated the effects of plant growth-promoting rhizobacteria (PGPR) isolates in enhancing upland rice growth and yield. Bacteria were isolated,...  相似文献   
26.
27.
Corals harbor diverse and abundant prokaryotic populations. Bacterial communities residing in the coral mucus layer may be either pathogenic or symbiotic. Some species may produce antibiotics as a method of controlling populations of competing microbial species. The present study characterizes cultivable Pseudoalteromonas sp. isolated from the mucus layer of different coral species from the northern Gulf of Eilat, Red Sea, Israel. Six mucus-associated Pseudoalteromonas spp. obtained from different coral species were screened for antibacterial activity against 23 tester strains. Five of the six Pseudoalteromonas strains demonstrated extracellular antibacterial activity against Gram-positive—but not Gram-negative—tester strains. Active substances secreted into the cell-free supernatant are heat-tolerant and inhibit growth of Bacillus cereus, Staphylococcus aureus, and of ten endogenous Gram-positive marine bacteria isolated from corals. The Pseudoalteromonas spp. isolated from Red sea corals aligned in a phylogenetic tree with previously isolated Pseudoalteromonas spp. of marine origin that demonstrated antimicrobial activity. These results suggest that coral mucus-associated Pseudoalteromonas may play a protective role in the coral holobiont's defense against potential Gram-positive coral pathogens.  相似文献   
28.
The optic tectum holds a central position in the tectofugal pathway of non-mammalian species and is reciprocally connected with the nucleus isthmi. Here, we recorded from individual nucleus isthmi pars parvocellularis (Ipc) neurons in the turtle eye-attached whole-brain preparation in response to a range of computer-generated visual stimuli. Ipc neurons responded to a variety of moving or flashing stimuli as long as those stimuli were small. When mapped with a moving spot, the excitatory receptive field was of circular Gaussian shape with an average half-width of less than 3°. We found no evidence for directional sensitivity. For moving spots of varying sizes, the measured Ipc response-size profile was reproduced by the linear Difference-of-Gaussian model, which is consistent with the superposition of a narrow excitatory center and an inhibitory surround. Intracellular Ipc recordings revealed a strong inhibitory connection from the nucleus isthmi pars magnocellularis (Imc), which has the anatomical feature to provide a broad inhibitory projection. The recorded Ipc response properties, together with the modulatory role of the Ipc in tectal visual processing, suggest that the columns of Ipc axon terminals in turtle optic tectum bias tectal visual responses to small dark changing features in visual scenes.  相似文献   
29.
Araucaria araucana (Araucaria) is a long‐lived conifer growing along a sharp west–east biophysical gradient in the Patagonian Andes. The patterns and climate drivers of Araucaria growth have typically been documented on the driest part of the gradient relying on correlations with meteorological records, but the lack of in situ soil moisture observations has precluded an assessment of the growth responses to soil moisture variability. Here, we use a network of 21 tree‐ring width chronologies to investigate the spatiotemporal patterns of tree growth through the entire gradient and evaluate their linkages with regional climate and satellite‐observed surface soil moisture variability. We found that temporal variations in tree growth are remarkably similar throughout the gradient and largely driven by soil moisture variability. The regional spatiotemporal pattern of tree growth was positively correlated with precipitation (r = 0.35 for January 1920–1974; P < 0.01) and predominantly negatively correlated with temperature (r = ?0.38 for January–March 1920–1974; P < 0.01) during the previous growing season. These correlations suggest a temporally lagged growth response to summer moisture that could be associated with known physiological carry‐over processes in conifers and to a response to moisture variability at deeper layers of the rooting zone. Notably, satellite observations revealed a previously unobserved response of Araucaria growth to summer surface soil moisture during the current rather than the previous growing season (r = 0.65 for 1979–2000; P < 0.05). This new response has a large spatial footprint across the mid‐latitudes of the South American continent (35°–45°S) and highlights the potential of Araucaria tree rings for palaeoclimatic applications. The strong moisture constraint on tree growth revealed by satellite observations suggests that projected summer drying during the coming decades may result in regional growth declines in Araucaria forests and other water‐limited ecosystems in the Patagonian Andes.  相似文献   
30.
Platelet activation due to vascular injury is essential for hemostatic plug formation, and is mediated by agonists, such as thrombin, which trigger distinct receptor-coupled signaling pathways. Thrombin is a coagulation protease, which activates G protein-coupled protease-activated receptors (PARs) on the surface of platelets. We found that C57BL/6J and BALB/C mice that are deficient in protein kinase C θ (PKCθ), exhibit an impaired hemostasis, and prolonged bleeding following vascular injury. In addition, murine platelets deficient in PKCθ displayed an impaired thrombin-induced platelet activation and aggregation response. Lack of PKCθ also resulted in impaired α-granule secretion, as demonstrated by the low surface expression of CD62P, in thrombin-stimulated platelets. Since PAR4 is the only mouse PAR receptor that delivers thrombin-induced activation signals in platelets, our results suggest that PKCθ is a critical effector molecule in the PAR4-linked signaling pathways and in the regulation of normal hemostasis in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号