首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1044篇
  免费   84篇
  2023年   5篇
  2021年   13篇
  2020年   5篇
  2019年   12篇
  2018年   8篇
  2017年   12篇
  2016年   21篇
  2015年   37篇
  2014年   32篇
  2013年   52篇
  2012年   69篇
  2011年   64篇
  2010年   41篇
  2009年   58篇
  2008年   65篇
  2007年   58篇
  2006年   56篇
  2005年   63篇
  2004年   57篇
  2003年   59篇
  2002年   47篇
  2001年   18篇
  2000年   19篇
  1999年   16篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   11篇
  1994年   11篇
  1993年   12篇
  1992年   14篇
  1991年   8篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   7篇
  1985年   12篇
  1984年   12篇
  1983年   6篇
  1982年   12篇
  1981年   9篇
  1980年   15篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   8篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1128条查询结果,搜索用时 31 毫秒
41.
Summary Fifty-four species of the Chenopodiaceae in Israel were examined for their anatomical features, 13C values, habitat and phytogeographical distribution. 17 species have 13C values between -20 and -30and non-Kranz anatomy (NK) and are therefore considered as C3 plants. 37 species have 13C values between -10 and -18 and Kranz or C4-Suaeda type anatomy and are therefore considered as C4 plants. Some C4 plants have leaf structure which seems to be intermediate between the Kranz and the C4-Suaeda type of leaf anatomy.The segregation of the species into photosynthetic groups shows tribal and phytogeographical grouping. Most of the C3 Chenopods are either mesoruderal plants or coastal halophytes, with a distribution area which covers the Euro-Siberian as well as the Mediterranean phytogeographical regions. The C4 Chenopods are mainly desert or steppe xerohalophytes with a distribution area which includes the Saharo-Arabian and/or Irano-Turanian phytogeographical regions.  相似文献   
42.
This paper offers the suggestion that heat shock inhibition of tubulin synthesis accounts for the molecular mechanism by which periodic heat shocks induce cell synchrony in Tetrahymena. Each heat shock (34 °C) represses tubulin synthesis and blocks the division cycle at the point when the oral structure, rich in microtubules, would normally begin to assemble. Recovery (at 28 °C) from each heat shock is characterized by parallel derepression of tubulin synthesis and of oral development. Changes in protein synthesis patterns are complex when the temperature is shifted up and down between 28 and 34 °C and further experimental support is required in support of the hypothesis here forwarded.  相似文献   
43.
A number of methods for the selective enrichment of recombinant plasmids were examined; these include alkaline phosphatase treatment of the restricted pBR322 vector, as well as a combination of this and S1 nuclease treatment of the ligated mixture of pBR322 and pCR1 plasmids orS. griseus DNA followed by D-cycloserine treatment to enrich for cells carrying recombinant molecules. The relative efficiencies of these methods were compared.  相似文献   
44.
The Dead Sea is a hypersaline water body. Its total dissolved salts content is on the average 322.6 gm/liter. The dominant cation is Mg (40.7 gm/liter), followed by Na (39.2 gm/liter), Ca (17 gm/liter) and K (7 gm/liter). The major anion is Cl (212 gm/liter), followed by Br (5 gm/liter); SO4 and HCO3, are very minor. The lake contains a limited variety of microorganisms and no higher organisms. The number of recorded species is very low, but the total biomass is reasonably high (about 105 bacteria/ml and 104 algal cells/ml). The indigenous flora is comprised mainly of obligate halophylic bacteria, such as the pink, pleomorphicHalobacterium sp., aSarcina-like coccus, and the facultative halophilic green alga,Dunaliella. Sulfate reducers can be isolated from bottom sediments. Recently a unique obligate magnesiophile bacteria was isolated from Dead Sea sediment. Several of the Dead Sea organisms possess unusual properties. TheHalobacterium sp. has extremely high intercellular K+ concentration (up to 4.8M) and extraordinary specificity for K+ over Na. TheDunaliella has very high intracellular concentration of glycerol (up to 2.1M). The microorganisms exert marked influence on some biogeochemical processes occurring in the lake, such as the control of the sulfur cycle and the formation and diagenesis of organic matter in the sediments. The Dead Sea is an excellent example of the development of two different mechanisms for adjusting to a hostile environment. The algae adjust to the high salinity by developing a mechanism for the exclusion of salts from the intracellular fluid and using glycerol for osmotic regulation. On the other hand, the bacteria adapt to the environment by adjusting their internal inorganic ionic strength, but not composition, to that of the medium. The problem of population dynamics and limiting factors for algal and bacterial productivity are discussed in view of the total absence of zooplankton and other consumers other than bacteria.  相似文献   
45.
46.
The Major histocompatibility complex (MHC) class I peptidome is thought to be generated mostly through proteasomal degradation of cellular proteins, a notion that is based on the alterations in presentation of selected peptides following proteasome inhibition. We evaluated the effects of proteasome inhibitors, epoxomicin and bortezomib, on human cultured cancer cells. Because the inhibitors did not reduce the level of presentation of the cell surface human leukocyte antigen (HLA) molecules, we followed their effects on the rates of synthesis of both HLA peptidome and proteome of the cells, using dynamic stable isotope labeling in tissue culture (dynamic-SILAC). The inhibitors reduced the rates of synthesis of most cellular proteins and HLA peptides, yet the synthesis rates of some of the proteins and HLA peptides was not decreased by the inhibitors and of some even increased. Therefore, we concluded that the inhibitors affected the production of the HLA peptidome in a complex manner, including modulation of the synthesis rates of the source proteins of the HLA peptides, in addition to their effect on their degradation. The collected data may suggest that the current reliance on proteasome inhibition may overestimate the centrality of the proteasome in the generation of the MHC peptidome. It is therefore suggested that the relative contribution of the proteasomal and nonproteasomal pathways to the production of the MHC peptidome should be revaluated in accordance with the inhibitors effects on the synthesis rates of the source proteins of the MHC peptides.The repertoires and levels of peptides, presented by the major histocompatibility complex (MHC)1 class I molecules at the cells'' surface, are modulated by multiple factors. These include the rates of synthesis and degradation of their source proteins, the transport efficacy of the peptides through the transporter associated with antigen processing (TAP) into the endoplasmic reticulum (ER), their subsequent processing and loading onto the MHC molecules within the ER, and the rates of transport of the MHC molecules with their peptide cargo to the cell surface. The off-rates of the presented peptides, the residence time of the MHC complexes at the cell surface, and their retrograde transport back into the cytoplasm, influence, as well, the presented peptidomes (reviewed in (1)). Even though significant portions of the MHC class I peptidomes are thought to be derived from newly synthesized proteins, including misfolded proteins, defective ribosome products (DRiPs), and short lived proteins (SLiPs), most of the MHC peptidome is assumed to originate from long-lived proteins, which completed their functional cellular roles or became defective (retirees), (reviewed in (2)).The main protease, supplying the MHC peptidome production pipeline, is thought to be the proteasome (3). It is also responsible for generation of the final carboxyl termini of the MHC peptides (4), (reviewed in (5)). The final trimming of the n-termini of the peptides, within the endoplasmic reticulum (ER), is thought to be performed by amino peptidases, such as ERAP1/ERAAP, which fit the peptides into their binding groove on the MHC molecules (6) (reviewed in (7)). Nonproteasomal proteolytic pathways were also suggested as possible contributors to the MHC peptidome, including proteolysis by the ER resident Signal peptide peptidase (8, 9), the cytoplasmic proteases Insulin degrading enzyme (10), Tripeptidyl peptidase (1113), and a number of proteases within the endolysosome pathway (reviewed recently in (1417)). In contrast to the mostly cytoplasmic and ER production of the MHC class I peptidome, the class II peptidome is produced in a special compartment, associated with the endolysosome pathway (1820). This pathway is also thought to participate in the cross presentation of class I peptides, derived from proteins up-taken by professional antigen presenting cells (21), (reviewed in (1517, 22)).The centrality of the proteasomes in the generation of the MHC peptidome was deduced mostly from the observed change in presentation levels of small numbers of selected peptides, following proteasome inhibition (3, 23). Even the location of some of the genes encoding the catalytic subunits of the immunoproteasome (LMP2 and LMP7) (24) within the MHC class II genomic locus, was suggested to support the involvement of the proteasome in the generation of the MHC class I peptidome (25). Similar conclusions were deduced from alterations in peptide presentation, following expression of the catalytic subunits of the immunoproteasome (26), (reviewed in (5)). Yet, although most of the reports indicated reductions in presentation of selected peptides by proteasome inhibition (3, 2729), others have observed only limited, and sometimes even opposite effects (23, 3032).The matter is further complicated by the indirect effects of proteasome inhibition used for such studies on the arrest of protein synthesis by the cells (3335), on the transport rates of the MHC molecules to the cell surface, and on their retrograde transport back to the vesicular system (36) (reviewed in (37)). Proteasome inhibition likely causes shortage of free ubiquitin, reduced supply of free amino acids, and induces an ER unfolded protein response (UPR), which signals the cells to block most (but not all) cellular protein synthesis (reviewed in (38)). Because a significant portion of the MHC peptidome originates from degradation of DRiPs and SLiPs (reviewed in (2)), arrest of new protein synthesis should influence the presentation of their derived MHC peptides. Taken together, these arguments may suggest that merely following the changes in the presentation levels of the MHC molecules, or even of specific MHC peptides, after proteasome inhibition, does not provide the full picture for deducing the relative contribution of the proteasomal pathway to the production of the MHC peptidome (reviewed in (7)).MHC peptidome analysis can be performed relatively easily by modern capillary chromatography combined with mass spectrometry (reviewed in (39)). The peptides are recovered from immunoaffinity purified MHC molecules after detergent solubilization of the cells (40, 41), from soluble MHC molecules secreted to the cells'' growth medium (42, 43) or from patients'' plasma (44). The purified peptides pools are resolved by capillary chromatography and the individual peptides are identified and quantified by tandem mass spectrometry (40), (reviewed in (4547)). In cultured cells, quantitative analysis can also be followed by metabolic incorporation of stable isotope labeled amino acids (SILAC) (48). Furthermore, the rates of de novo synthesis of both MHC peptides and their proteins of origin can be followed using the dynamic-SILAC proteomics approach (49) with its further adaptation to HLA peptidomics (5052).This study attempts to define the relative contribution of the proteasomes to the production of HLA class I peptidome by simultaneously following the effects of proteasome inhibitors, epoxomicin and bortezomib (Velcade), on the rates of de novo synthesis of both the HLA class I peptidome and the cellular proteome of the same MCF-7 human breast cancer cultured cells. The proteasome inhibitors did not reduce the levels of HLA presentations, yet affected the rates of production of both the HLA peptidome and cellular proteome, mostly decreasing, but also increasing some of the synthesis rates of the HLA peptides and cellular proteins. Thus, we suggest that the degree of contribution of the proteasomal pathway to the production of the HLA-I peptidome should be re-evaluated in accordance with their effects on the entire HLA class-I peptidome, while taking into consideration the inhibitors'' effects on the synthesis (and degradation) rates of the source proteins of each of the studied HLA peptides.  相似文献   
47.
Heterotrimeric GTP-binding proteins (G proteins) and mitogen-activated protein kinase (MAPK) cascades involve vegetative hyphal growth, development of infection-related structure, colonization in host plant and female fertility in phytopathogenic ascomycete fungi. In this study, a heterotrimeric G protein β subunit (Gβ), GPB1, and MAPK, MPK1, were characterized from Fusarium sacchari (= Gibberella sacchari; mating population B of the G. fujikuroi-species complex). GPB1 and MPK1 showed high homology to known Gβ and Fus3/Kss1 MAP kinases of other filamentous ascomycetes, respectively. Disruption (Δ) of gpb1 suppressed hyphal branching and accelerated aerial hyphae formation in F. sacchari. Oppositely, disruption of mpk1 caused delayed aerial hyphae formation. These indicated that GPB1 regulates vegetative hyphal growth negatively, and MPK1 does positively in F. sacchari. Both Δgpb1 and Δmpk1 showed female sterility. Level of intracellular cAMP in Δgpb1 was lower than wild type. Exogenous cyclic AMP (cAMP) partially restored enhanced aerial hyphae formation. These suggested that abnormal hyphal growth was caused by depletion of intracellular cAMP in Δgpb1. cAMP has been reported to suppress development of perithecia in crossing between wild type strains. Thus, precise regulation of intracellular cAMP level via Gβ/MAPK is essential for normal hyphal growth and fertility.  相似文献   
48.
To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater–brine haloclines of the deep anoxic hypersaline basins Bannock and L’Atalante were sampled in intervals of 10 cm with increasing salinity. 15N isotope pairing incubation experiments showed the production of 29N2 and 30N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L’Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L?1 day?1 while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L’Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus ‘Candidatus Scalindua’ and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. ‘Scalindua brodae’ like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L’Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.  相似文献   
49.
Neutrophil recruitment is essential in clearing pneumococcal infections. The first step in neutrophil extravasation involves the interaction between P‐selectin on activated endothelium and P‐Selectin Glycoprotein 1 (PSGL‐1) on neutrophils. Here, we identify pneumococcal Zinc metalloproteinase C as a potent inhibitor of PSGL‐1. ZmpC degrades the N‐terminal domain of PSGL‐1, thereby disrupting the initial rolling of neutrophils on activated human umbilical vein endothelial cells. Furthermore, mice infected with wild‐type strain in the model of pneumococcal pneumonia showed lower lungs neutrophil infiltration compare to animals infected with ZmpC mutant. In addition, we confirmed the association of zmpC with serotype 8 and 11A and found it to be associated with serotype 33F as well. In conclusion, wereport PSGL‐1 as a novel target for ZmpC and show that ZmpC inhibits neutrophil extravasation during pneumococcal pneumonia.  相似文献   
50.

Background

Source identification in areas with outbreaks of airborne pathogens is often time-consuming and expensive. We developed a model to identify the most likely location of sources of airborne pathogens.

Methods

As a case study, we retrospectively analyzed three Q fever outbreaks in the Netherlands in 2009, each with suspected exposure from a single large dairy goat farm. Model input consisted only of case residential addresses, day of first clinical symptoms, and human population density data. We defined a spatial grid and fitted an exponentially declining function to the incidence-distance data of each grid point. For any grid point with a fit significant at the 95% confidence level, we calculated a measure of risk. For validation, we used results from abortion notifications, voluntary (2008) and mandatory (2009) bulk tank milk sampling at large (i.e. >50 goats and/or sheep) dairy farms, and non-systematic vaginal swab sampling at large and small dairy and non-dairy goat/sheep farms. In addition, we performed a two-source simulation study.

Results

Hotspots – areas most likely to contain the actual source – were identified at early outbreak stages, based on the earliest 2–10% of the case notifications. Distances between the hotspots and suspected goat farms varied from 300–1500 m. In regional likelihood rankings including all large dairy farms, the suspected goat farms consistently ranked first. The two-source simulation study showed that detection of sources is most clear if the distance between the sources is either relatively small or relatively large.

Conclusions

Our model identifies the most likely location of sources in an airborne pathogen outbreak area, even at early stages. It can help to reduce the number of potential sources to be investigated by microbial testing and to allow rapid implementation of interventions to limit the number of human infections and to reduce the risk of source-to-source transmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号