首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1169篇
  免费   76篇
  1245篇
  2023年   7篇
  2022年   11篇
  2021年   21篇
  2020年   11篇
  2019年   26篇
  2018年   23篇
  2017年   20篇
  2016年   24篇
  2015年   53篇
  2014年   36篇
  2013年   75篇
  2012年   74篇
  2011年   66篇
  2010年   44篇
  2009年   63篇
  2008年   64篇
  2007年   63篇
  2006年   59篇
  2005年   61篇
  2004年   60篇
  2003年   54篇
  2002年   43篇
  2001年   18篇
  2000年   12篇
  1999年   15篇
  1998年   11篇
  1997年   11篇
  1996年   11篇
  1995年   10篇
  1994年   9篇
  1993年   11篇
  1992年   9篇
  1991年   6篇
  1990年   10篇
  1989年   11篇
  1988年   9篇
  1986年   7篇
  1985年   10篇
  1984年   10篇
  1983年   10篇
  1982年   12篇
  1981年   10篇
  1980年   14篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1975年   7篇
  1974年   5篇
  1973年   7篇
  1971年   5篇
排序方式: 共有1245条查询结果,搜索用时 19 毫秒
101.
Drugs currently used for treating Parkinson''s disease patients provide symptomatic relief without altering the neurodegenerative process. Our aim was to examine the possibility of using DJ-1 (PARK7), as a novel therapeutic target for Parkinson''s disease. We designed a short peptide, named ND-13. This peptide consists of a 13 amino acids segment of the DJ-1-protein attached to 7 amino acids derived from TAT, a cell penetrating protein. We examined the effects of ND-13 using in vitro and in vivo experimental models of Parkinson''s disease. We demonstrated that ND-13 protects cultured cells against oxidative and neurotoxic insults, reduced reactive oxygen species accumulation, activated the protective erythroid-2 related factor 2 system and increased cell survival. ND-13 robustly attenuated dopaminergic system dysfunction and in improved the behavioral outcome in the 6-hydroxydopamine mouse model of Parkinson''s disease, both in wild type and in DJ-1 knockout mice. Moreover, ND-13 restored dopamine content in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model. These findings validate DJ-1 as a promising therapeutic target in Parkinson''s disease and identify a novel peptide with clinical potential, which may be significant for a broader range of neurological diseases, possibly with an important impact for the neurosciences.  相似文献   
102.
The receptors mediating the inhibition of D1 dopamine receptor-stimulated adenylate cyclase by opioids were examined in primary cultures of rat neostriatal neurons. Adenylate cyclase activity was dose-dependently increased by the selective D1 dopamine receptor agonist SKF 38393 (EC50 = 0.05 microM). This stimulation was fully antagonized by the selective D1 dopamine receptor antagonist SCH 23390 (1 microM). SKF 38393 (1 microM)-stimulated adenylate cyclase activity was strongly reduced (by almost 60%) by the highly selective mu-agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAGO; EC50 = 0.006 microM) and high concentrations of the selective delta-agonist [D-Ser2(O-tert-butyl), Leu5]-enkephalyl-Thr6 (DSTBU-LET; EC50 = 0.13 microM) but not by the selective delta-agonist [D-penicillamine2, D-penicillamine5]enkephalin (DPDPE). D1 dopamine receptor-stimulated adenylate cyclase activity was also slightly reduced (by approximately 20%) by high concentrations of the kappa-agonist U50,488 (EC50 = 0.63 microM). The inhibitory effects of submaximally effective concentrations of DAGO, DSTBULET, and U50,488 were equally well antagonized by the mu-opioid receptor-selective antagonist naloxone (EC50 of approximately 0.1 microM). Neither the irreversible delta-ligand fentanyl isothiocyanate (1 microM) nor the reversible delta-antagonist ICI 174864 (1 microM) reversed the inhibitory effects of DSTBULET. The inhibitory effects of DAGO and U50,488 were equally well reversed by high concentrations (greater than 0.1 microM) of the kappa-opioid receptor-selective antagonist norbinaltorphimine. The effect of DAGO (1 microM) was already detectable after 1 day in culture, whereas DPDPE (1 microM) had no effect even after 28 days in culture. These data indicate that an homogeneous population of mu-opioid receptors coupled as inhibitors to D1 dopamine receptor-stimulated adenylate cyclase is expressed in rat neostriatal neurons in primary culture.  相似文献   
103.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
104.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   
105.
Self assembly is a prerequisite for fabricating nanoscale structures. Here we present a new fusion protein based on the stress-responsive homo-oligomeric protein, SP1. This ring-shaped protein is a highly stable homododecamer, which can be potentially utilized to self-assemble different modules and enzymes in a predicted and oriented manner. For that purpose, a cohesin module (a component of the bacterial cellulosome) was selected, its gene fused in-frame to SP1, and the fusion protein was expressed in Escherichia coli. The cohesin module, specialized to incorporate different enzymes through specific recognition of a dockerin modular counterpart, is used to display new moieties on the SP1 scaffold. The SP1 scaffold displayed 12 active cohesin modules and specific binding to a dockerin-fused cellulase enzyme from Thermobifida fusca. Moreover, we found a significant increase in specific activity of the scaffold-displayed enzymes.  相似文献   
106.
Productivity of cereal crops is restricted in saline soils but may be improved by nitrogen nutrition. In this study, the effect of ionic nitrogen form on growth, mineral content, protein content and ammonium assimilation enzyme activities of barley (Hordeum vulgare cv. Alexis L.) irrigated with saline water, was determined. Leaf and tiller number as well as plant fresh and dry weights declined under salinity (120 mM NaCl). In non-saline conditions, growth parameters were increased by application of NH(4)(+)/NO(3)(-) (25:75) compared to NO(3)(-) alone. Under saline conditions, application of NH(4)(+)/NO(3)(-) led to a reduction of the detrimental effects of salt on growth. Differences in growth between the two nitrogen regimes were not due to differences in photosynthesis. The NH(4)(+)/NO(3)(-) regime led to an increase in total N in control and saline treatments, but did not cause a large decrease in plant Na(+) content under salinity. Activities of GS (EC 6.3.1.2), GOGAT (EC 1.4.1.14), PEPC (EC 4.1.1.31) and AAT (EC 2.6.1.1) increased with salinity in roots, whereas there was decreased activity of the alternative ammonium assimilation enzyme GDH (EC 1.4.1.2). The most striking effect of nitrogen regime was observed on GDH whose salinity-induced decrease in activity was reduced from 34% with NO(3)(-) alone to only 14% with the mixed regime. The results suggest that the detrimental effects of salinity can be reduced by partial substitution of NO(3)(-) with NH(4)(+) and that this is due to the lower energy cost of N assimilation with NH(4)(+) as opposed to NO(3)(-) nutrition.  相似文献   
107.
Aberrant T cell responses during T cell activation and immunological synapse (IS) formation have been described in systemic lupus erythematosus (SLE). Kv1.3 potassium channels are expressed in T cells where they compartmentalize at the IS and play a key role in T cell activation by modulating Ca(2+) influx. Although Kv1.3 channels have such an important role in T cell function, their potential involvement in the etiology and progression of SLE remains unknown. This study compares the K channel phenotype and the dynamics of Kv1.3 compartmentalization in the IS of normal and SLE human T cells. IS formation was induced by 1-30 min exposure to either anti-CD3/CD28 Ab-coated beads or EBV-infected B cells. We found that although the level of Kv1.3 channel expression and their activity in SLE T cells is similar to normal resting T cells, the kinetics of Kv1.3 compartmentalization in the IS are markedly different. In healthy resting T cells, Kv1.3 channels are progressively recruited and maintained in the IS for at least 30 min from synapse formation. In contrast, SLE, but not rheumatoid arthritis, T cells show faster kinetics with maximum Kv1.3 recruitment at 1 min and movement out of the IS by 15 min after activation. These kinetics resemble preactivated healthy T cells, but the K channel phenotype of SLE T cells is identical to resting T cells, where Kv1.3 constitutes the dominant K conductance. The defective temporal and spatial Kv1.3 distribution that we observed may contribute to the abnormal functions of SLE T cells.  相似文献   
108.
It is unclear whether cholesteryl ester transfer protein (CETP) contributes to high density lipoprotein cholesterol (HDL-C) levels in hyperalphalipoproteinemia (HALP) in Caucasians. Moreover, even less is known about the effects of hereditary CETP deficiency in non-Japanese. We studied 95 unrelated Caucasian individuals with HALP. No correlations between CETP concentration or activity and HDL-C were identified. Screening for CETP gene defects led to the identification of heterozygosity for a novel splice site mutation in one individual. Twenty-five heterozygotes for this mutation showed reduced CETP concentration (-40%) and activity (-50%) and a 35% increase of HDL-C compared with family controls. The heterozygotes presented with an isolated high HDL-C, whereas the remaining subjects exhibited a typical high HDL-C/low-triglyceride phenotype. The increase of HDL-C in the CETP-deficient heterozygotes was primarily attributable to increased high density lipoprotein containing apolipoprotein A-I and A-II (LpAI:AII) levels, contrasting with an increase in both high density lipoprotein containing apolipoprotein A-I only and LpAI:AII in the other group. This study suggests the absence of a relationship between CETP and HDL-C levels in Caucasians with HALP. The data furthermore indicate that genetic CETP deficiency is rare among Caucasians and that this disorder presents with a phenotype that is different from that of subjects with HALP who have no mutation in the CETP gene.  相似文献   
109.
The heritable muscle disorder hypokalemic periodic paralysis (HypoPP) is characterized by attacks of flaccid weakness, brought on by sustained sarcolemmal depolarization. HypoPP is genetically linked to missense mutations at charged residues in the S4 voltage-sensing segments of either CaV1.1 (the skeletal muscle L-type Ca(2+) channel) or NaV1.4 (the skeletal muscle voltage-gated Na(+) channel). Although these mutations alter the gating of both channels, these functional defects have proven insufficient to explain the sarcolemmal depolarization in affected muscle. Recent insight into the topology of the S4 voltage-sensing domain has aroused interest in an alternative pathomechanism, wherein HypoPP mutations might generate an aberrant ionic leak conductance by unblocking the putative aqueous crevice ("gating-pore") in which the S4 segment resides. We tested the rat isoform of NaV1.4 harboring the HypoPP mutation R663H (human R669H ortholog) at the outermost arginine of S4 in domain II for a gating-pore conductance. We found that the mutation R663H permits transmembrane permeation of protons, but not larger cations, similar to the conductance displayed by histidine substitution at Shaker K(+) channel S4 sites. These results are consistent with the notion that the outermost charged residue in the DIIS4 segment is simultaneously accessible to the cytoplasmic and extracellular spaces when the voltage sensor is positioned inwardly. The predicted magnitude of this proton leak in mature skeletal muscle is small relative to the resting K(+) and Cl(-) conductances, and is thus not likely to fully account for the aberrant sarcolemmal depolarization underlying the paralytic attacks. Rather, it is possible that a sustained proton leak may contribute to instability of V(REST) indirectly, for instance, by interfering with intracellular pH homeostasis.  相似文献   
110.
During the past several decades, there has been a significant increase in the understanding of the biology, clinical behavior, and prognostic factors of renal cell carcinoma (RCC). Such progress has led to greater sophistication in the diagnosis and classification of RCC. Here, we review recent advances in our knowledge of the biologic characteristics of RCC that have resulted in notable achievements in staging, prognosis, patient selection, and treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号