首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   43篇
  2023年   4篇
  2022年   10篇
  2021年   12篇
  2020年   9篇
  2019年   15篇
  2018年   11篇
  2017年   21篇
  2016年   23篇
  2015年   23篇
  2014年   26篇
  2013年   37篇
  2012年   45篇
  2011年   55篇
  2010年   28篇
  2009年   23篇
  2008年   36篇
  2007年   24篇
  2006年   26篇
  2005年   23篇
  2004年   14篇
  2003年   26篇
  2002年   18篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   4篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
排序方式: 共有566条查询结果,搜索用时 31 毫秒
531.
Ariane Zutz  Hermann Schägger 《BBA》2009,1787(6):681-822
ABC transporters represent one of the largest families of membrane proteins that are found in all three phyla of life. Mitochondria comprise up to four ABC systems, ABCB7/ATM1, ABCB10/MDL1, ABCB8 and ABCB6. These half-transporters, which assemble into homodimeric complexes, are involved in a number of key cellular processes, e.g. biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis, iron homeostasis, multidrug resistance, and protection against oxidative stress. Here, we summarize recent advances and emerging themes in our understanding of how these ABC systems in the inner and outer mitochondrial membrane fulfill their functions in important (patho) physiological processes, including neurodegenerative and hematological disorders.  相似文献   
532.
Assisted reproductive techniques (ARTs) have been widely used over the past two decades to help infertile couples conceive. Recent studies on the ART-conceived population have raised concern about the possible risks of these techniques, in particular with regard to increased incidence of growth and developmental disorders. Some of these effects might be linked to genomic imprinting defects, although current evidence does not allow definite conclusions to be drawn. This review summarises studies that have examined effects of gamete and embryo manipulations on imprinted genes, and discusses the evidence for and against effects of ARTs on offspring health, and in particular imprinting-related conditions.  相似文献   
533.
534.
Thyroid hormones play important roles in brain function. However, few information is available about the effect of 3,5,3′-triiodo-l-thyronine (T3) or thyroxine (T4) on the in vitro phosphorylation of intermediate filament (IF) proteins from cerebral cortex of rats. In this study we investigated the involvement of GABAergic mechanisms mediating the effects of T3 and T4 on the in vitro incorporation of 32P into IF proteins from cerebral cortex of 10-day-old male rats. Tissue slices were incubated with or without T3, T4, γ-aminobutiric acid (GABA), kinase inhibitors or specific GABA antagonists and 32P-orthophosphate for 30 min. The IF-enriched cytoskeletal fraction was extracted in a high salt Triton-containing buffer and the in vitro 32P incorporation into IF proteins was measured. We first observed that 1 μM T3 and 0.1 μM T4 significantly increased the in vitro incorporation of 32P into the IF proteins studied through the PKA and PKCaMII activities. A similar effect on IF phosphorylation was achieved by incubating cortical slices with GABA. Furthermore, by using specific GABA antagonists, we verified that T3 induced a stimulatory effect on IF phosphorylation through noncompetitive mechanisms involving GABAA, beyond GABAB receptors. In contrast, T4 effects were mediated mainly by GABAB mechanisms. In conclusion, our results demonstrate a rapid nongenomic action of T3 and T4 on the phosphorylating system associated to the IF proteins in slices of cerebral cortex of 10 day-old male rats and point to GABAergic mechanisms mediating such effects.  相似文献   
535.
While the absence of any cytoskeleton was once recognized as a distinguishing feature of prokaryotes, it is now clear that a number of different bacterial proteins do form filaments in vivo. Despite the critical roles these proteins play in cell shape, genome segregation and cell division, molecular mechanisms have remained obscure in part for lack of electron microscopy-resolution images where these filaments can be seen acting within their cellular context. Here, electron cryotomography was used to image the widely studied model prokaryote Caulobacter crescentus in an intact, near-native state, producing three-dimensional reconstructions of these cells with unprecedented clarity and fidelity. We observed many instances of large filament bundles in various locations throughout the cell and at different stages of the cell cycle. The bundles appear to fall into four major classes based on shape and location, referred to here as 'inner curvature', 'cytoplasmic', 'polar' and 'ring-like'. In an attempt to identify at least some of the filaments, we imaged cells where crescentin and MreB filaments would not be present. The inner curvature and cytoplasmic bundles persisted, which together with their localization patterns, suggest that they are composed of as-yet unidentified cytoskeletal proteins. Thus bacterial filaments are frequently found as bundles, and their variety and abundance is greater than previously suspected.  相似文献   
536.
The adenosine triphosphate-binding cassette A1 (ABCA1) gene plays a key role in reverse cholesterol transport. Some ABCA1 gene polymorphisms have been associated with high-density lipoprotein-cholesterol (HDL-C) concentrations. The aim of this study was to assess the effect of three polymorphisms, C69T, G378C, and G1051A (R219K), on HDL-C levels and their interaction with BMI in more than 5000 French whites from the D.E.S.I.R. (Data from an Epidemiological Study on the Insulin Resistance syndrome) cohort study. The T allele of the C69T single nucleotide polymorphism (SNP) was associated with higher HDL-C levels in normal-weight men (BMI <25 kg/m(2)). The C allele of the G378C SNP was associated with lower HDL-C in overweight subjects (BMI > or =25 kg/m(2)). For the G1051A SNP, in the normal-weight group, the minor A allele was significantly associated with higher HDL-C levels. In contrast, in overweight people, the minor allele was associated with lower HDL-C levels. After accounting for multiple testing, empiric p values remained significant for the associations between G378C SNP and HDL-C in the overweight group and between G1051A SNP and HDL-C in the normal-weight group. This study suggests that ABCA1 gene polymorphisms modulate HDL-C concentrations, in interaction with BMI, and, thus, they might influence cardiovascular risk in the general population.  相似文献   
537.
Periplasmic binding proteins (PBPs) are essential components of bacterial transport systems, necessary for bacterial growth and survival. The two‐domain structures of PBPs are topologically classified into three groups based on the number of crossovers or hinges between the globular domains: group I PBPs have three connections, group II have two, and group III have only one. Although a large number of structures for group I or II PBPs are known, fewer group III PBPs have been structurally characterized. Group I and II PBPs exhibit significant domain motions during transition from the unbound to ligand‐bound form, however, no large conformational changes have been observed to date in group III PBPs. We have solved the crystal structure of a periplasmic binding protein FitE, part of an iron transport system, fit, recently identified in a clinical E. coli isolate. The structure, determined at 1.8 Å resolution, shows that FitE is a group III PBP containing a single α‐helix bridging the two domains. Among the individual FitE molecules present in two crystal forms we observed three different conformations (open, closed, intermediate). Our crystallographic and molecular dynamics results strongly support the notion that group III PBPs also adopt the same Venus flytrap mechanism as do groups I and II PBPs. Unlike other group III PBPs, FitE forms dimers both in solution and in the crystals. The putative siderophore binding pocket is lined with arginine residues, suggesting an anionic nature of the iron‐containing siderophore. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   
538.
Desulfitobacterium hafniense strain PCP-1 reductively dechlorinates pentachlorophenol (PCP) to 3-chlorophenol and a variety of halogenated aromatic compounds at the ortho, meta, and para positions. Several reductive dehalogenases (RDases) are thought to be involved in this cascade of dehalogenation. We partially purified a novel RDase involved in the dechlorination of highly chlorinated phenols from strain PCP-1 cultivated in the presence of 2,4,6-trichlorophenol. The RDase was membrane associated, and the activity was sensitive to oxygen, with a half-life of 128 min upon exposure to air. The pH and temperature optima were 7.0 and 55°C, respectively. Several highly chlorinated phenols were dechlorinated at the ortho positions. The highest dechlorinating activity levels were observed with PCP, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol. 3-Chloro-4-hydroxyphenylacetate, 3-chloro-4-hydroxybenzoate, dichlorophenols, and monochlorophenols were not dechlorinated. The apparent Km value for PCP was 46.7 μM at a methyl viologen concentration of 2 mM. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activity, suggesting the involvement of a corrinoid cofactor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation revealed 2 bands with apparent molecular masses of 42 and 47 kDa. Mass spectrometry analysis using Mascot to search the genome sequence of D. hafniense strain DCB-2 identified the 42-kDa band as NADH-quinone oxidoreductase, subunit D, and the 47-kDa band as the putative chlorophenol RDase CprA3. This is the first report of an RDase with high affinity and high dechlorinating activity toward PCP.Halogenated compounds are generally known as toxic environmental pollutants. Hydrogenolytic reductive dehalogenation, a reaction involving the replacement of one halogen atom with one hydrogen atom, is the predominant mechanism for their transformation in anaerobic environments. This process can sustain microbial growth via electron transport-coupled phosphorylation (10, 26, 31). The majority of the known reductive dehalogenases (RDases) belong to the CprA/PceA family. These are single-polypeptide membrane-associated anaerobic enzymes that are synthesized as preproteins with a cleavable twin arginine translocation (TAT) peptide signal. They contain one corrinoid and two iron-sulfur clusters as cofactors.CprA enzymes catalyzing the reductive dechlorination of chloroaromatics have been purified from Desulfitobacterium hafniense strain DCB-2 (6), Desulfitobacterium dehalogenans (30), Desulfitobacterium chlororespirans strain Co23 (12, 14), Desulfitobacterium sp. strain PCE1 (29), and D. hafniense strain PCP-1 (28) and characterized, and PceA enzymes have been purified from Sulfurospirillum multivorans (22, 23), Desulfitobacterium sp. strain PCE-S (18, 19), D. hafniense strain TCE1 (29), Dehalococcoides ethenogenes 195 (15, 16), Desulfitobacterium sp. strain PCE1 (29), Dehalobacter restrictus (17, 25), Desulfitobacterium sp. strain Y51 (27), and Dehalococcoides sp. strain VS (20) and characterized. However, none of these enzymes showed high dechlorinating activity toward highly chlorinated phenols such as pentachlorophenol (PCP).D. hafniense strain PCP-1 is the only known strict anaerobic bacterium which reductively dechlorinates PCP to 3-chlorophenol (3-CP) and a variety of halogenated aromatic compounds at the ortho, meta, and para positions (2, 7). It dechlorinates PCP at the ortho, ortho, para, and meta positions in the following order: PCP → 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP) → 3,4,5-trichlorophenol (3,4,5-TCP) → 3,5-dichlorophenol (3,5-DCP) → 3-CP (7). Several RDases are thought to operate during this sequence of dechlorinations. Two RDases have already been purified from strain PCP-1. The first one, CrdA, is a membrane-associated enzyme, not related to CprA/PceA-type RDases, that mediates ortho dechlorination of 2,4,6-TCP and several chlorophenols (3). The second enzyme, CprA5, catalyzes the meta and para dechlorination of 3,5-DCP and several chlorophenols (28). Three other putative cprA genes were identified in strain PCP-1 (cprA2, cprA3, and cprA4), which suggests that other RDases with different specificities toward halogenated compounds exist in this strain (8, 31, 32). In this study, we have partially purified and characterized a new CprA-type RDase (CprA3) from strain PCP-1. CprA3 is the first reported RDase with high affinity toward PCP and with high ortho-dechlorinating activity toward PCP and other highly chlorinated phenols.  相似文献   
539.
The mammalian DOCK180 protein belongs to an evolutionarily conserved protein family, which together with ELMO proteins, is essential for activation of Rac GTPase-dependent biological processes. Here, we have analyzed the DOCK180-ELMO1 interaction, and map direct interaction interfaces to the N-terminal 200 amino acids of DOCK180, and to the C-terminal 200 amino acids of ELMO1, comprising the ELMO1 PH domain. Structural and biochemical analysis of this PH domain reveals that it is incapable of phospholipid binding, but instead structurally resembles FERM domains. Moreover, the structure revealed an N-terminal amphiphatic α-helix, and point mutants of invariant hydrophobic residues in this helix disrupt ELMO1-DOCK180 complex formation. A secondary interaction between ELMO1 and DOCK180 is conferred by the DOCK180 SH3 domain and proline-rich motifs at the ELMO1 C-terminus. Mutation of both DOCK180-interaction sites on ELMO1 is required to disrupt the DOCK180-ELMO1 complex. Significantly, although this does not affect DOCK180 GEF activity toward Rac in vivo, Rac signaling is impaired, implying additional roles for ELMO in mediating intracellular Rac signaling.  相似文献   
540.
To identify the epitopes in human interleukin-15 (IL-15) that are responsible for binding to the interleukin-15 receptor alpha chain, antibody and receptor mapping by peptide scanning and site-directed mutagenesis was used. By using peptide scanning, we identified four regions in IL-15. The first region ((85)CKECEELEEKN(95)) is located in the C-D loop and is recognized by a set of non-inhibitory antibodies. The second region ((102)SFVHIVQMFIN(112)) is located in helix D and is recognized by two antibodies that are inhibitory of IL-15 bio-activity but not of IL-15 binding to IL-15Ralpha. The two remaining regions react with a recombinant soluble form of the IL-15Ralpha; the first ((44)LLELQVISL(52), peptide 1) corresponds to a sequence located in the B-helix and the second ((64)ENLII(68), peptide 2) to a sequence located in helix C. The latter is also contained in the epitope recognized by an antibody (monoclonal antibody B-E29) that prevents IL-15 binding to IL-15Ralpha. By site-directed mutagenesis, we confirmed that residues present in peptide 1 (Leu-45, Glu-46, Val-49, Ser-51, and Leu-52) and peptide 2 (Leu-66 and Ile-67) are involved in the binding of IL-15 to IL-15Ralpha. Furthermore, the results presented indicate that residues in the second peptide (Glu-64, Asn-65, and Ile-68) participate in IL-2Rbeta recruitment. This finding could have implications for the dynamics of receptor assembly. These results also indicate that the modes of interaction of IL-15 and IL-2 with their respective alpha chains are not completely analogous. Finally, some of the IL-15 mutants generated in this study displayed agonist or antagonist properties and may be useful as therapeutic agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号