首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   20篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1999年   6篇
  1998年   8篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   6篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有156条查询结果,搜索用时 171 毫秒
91.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   
92.
93.
We show by whole genome sequence analysis that loss of RNase H2 activity increases loss of heterozygosity (LOH) in Saccharomyces cerevisiae diploid strains harboring the pol2-M644G allele encoding a mutant version of DNA polymerase ε that increases ribonucleotide incorporation. This led us to analyze the effects of loss of RNase H2 on LOH and on nonallelic homologous recombination (NAHR) in mutant diploid strains with deletions of genes encoding RNase H2 subunits (rnh201Δ, rnh202Δ, and rnh203Δ), topoisomerase 1 (TOP1Δ), and/or carrying mutant alleles of DNA polymerases ε, α, and δ. We observed an ∼7-fold elevation of the LOH rate in RNase H2 mutants encoding wild-type DNA polymerases. Strains carrying the pol2-M644G allele displayed a 7-fold elevation in the LOH rate, and synergistic 23-fold elevation in combination with rnh201Δ. In comparison, strains carrying the pol2-M644L mutation that decreases ribonucleotide incorporation displayed lower LOH rates. The LOH rate was not elevated in strains carrying the pol1-L868M or pol3-L612M alleles that result in increased incorporation of ribonucleotides during DNA synthesis by polymerases α and δ, respectively. A similar trend was observed in an NAHR assay, albeit with smaller phenotypic differentials. The ribonucleotide-mediated increases in the LOH and NAHR rates were strongly dependent on TOP1. These data add to recent reports on the asymmetric mutagenicity of ribonucleotides caused by topoisomerase 1 processing of ribonucleotides incorporated during DNA replication.  相似文献   
94.
95.

Background  

Determination of clot lysis times on whole blood, diluted whole blood, plasma or plasma fraction has been used for many years to assess the overall activity of the fibrinolytic system. We designed a completely computerised semi-automatic 8-channel device for measurement and determination of fibrin clot lysis. The lysis time is evaluated by a mathematical analysis of the lysis curve and the results are expressed in minute (range: 5 to 9999). We have used this new device for Euglobulin Clot Lysis Time (ECLT) determination, which is the most common test used in laboratories to estimate plasma fibrinolytic capacity.  相似文献   
96.
Previous reports have interpreted hybridization between snake satellite DNA and DNA clones from a variety of distant taxonomic groups as evidence for evolutionary conservation, which implies common ancestry (homology) and/or convergence (analogy) to produce the cross- hybridizing sequences. We have isolated 11 clones from a genomic library of Drosophila melanogaster, using a cloned 2.5-kb snake satellite probe of known nucleotide sequence. We have also analysed published sequence data from snakes, mice, and Drosophila. These data show that (1) all of the cross-hybridization between the snake, fly, and mouse clones can be accounted for by the presence of either of two tandem repeats, [GATA]n and [GACA]n and (2) these tandem repeats are organized differently among the different species. We find no evidence that these sequences are homologous apart from the existence of the simple repeat itself, although their divergence from a common ancestral sequence cannot be ruled out. The sequences contain a variety of homogeneous clusters of tandem repeats of CATA, GA, TA, and CA, as well as GATA and GACA. We suggest that these motifs may have arisen by a self-accelerating process involving slipped-strand mispairing of DNA. Homogeneity of the clusters might simply be the result of a rate of accumulation of tandem repeats that exceeds that of other mutations.   相似文献   
97.
98.
99.
100.
The specific interaction of hevein with GlcNAc-containing oligosaccharides has been analyzed by1H-NMR spectroscopy. The association constants for the binding of hevein to a variety of ligands have been estimated from1H-NMR titration experiments. The association constants increase in the order GlcNAc-alpha(1-->6)-Man < GlcNAc < benzyl-beta-GlcNAc < p-nitrophenyl-beta-GlcNAc < chitobiose < p- nitrophenyl-beta-chitobioside < methyl-beta-chitobioside < chitotriose. Entropy and enthalpy of binding for different complexes have been obtained from van't Hoff analysis. The driving force for the binding process is provided by a negative DeltaH0which is partially compensated by negative DeltaS0. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 475 accurate protein proton-proton distance constraints after employing the MARDIGRAS program. In addition, 15 unambiguous protein/carbohydrate NOEs were detected. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the highly refined solution conformation of this protein- carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein nOe's were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 20 refined structures was 0.055 nm, while the heavy atom rmsd was 0.116 nm. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to the complex. A comparison of the three-dimensional structure of hevein in solution to those reported for wheat germ agglutinin (WGA) and hevein itself in the solid state has also been performed. The polypeptide conformation has also been compared to the NMR-derived structure of a smaller antifungical peptide, Ac-AMP2.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号