首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   56篇
  2023年   5篇
  2022年   8篇
  2021年   14篇
  2020年   12篇
  2019年   10篇
  2018年   12篇
  2017年   11篇
  2016年   18篇
  2015年   26篇
  2014年   49篇
  2013年   50篇
  2012年   65篇
  2011年   52篇
  2010年   24篇
  2009年   23篇
  2008年   28篇
  2007年   37篇
  2006年   33篇
  2005年   24篇
  2004年   23篇
  2003年   25篇
  2002年   24篇
  2001年   17篇
  2000年   17篇
  1999年   18篇
  1998年   4篇
  1997年   6篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   3篇
  1971年   2篇
  1967年   2篇
排序方式: 共有752条查询结果,搜索用时 15 毫秒
661.
The mechanism(s) involved in agonist-stimulation of TRPC3 channels is not yet known. Here we demonstrate that TRPC3-N terminus interacts with VAMP2 and alphaSNAP. Further, endogenous and exogenously expressed TRPC3 colocalized and coimmunoprecipitated with SNARE proteins in neuronal and epithelial cells. Imaging of GFP-TRPC3 revealed its localization in the plasma membrane region and in mobile intracellular vesicles. Recovery of TRPC3-GFP fluorescence after photobleaching of the plasma membrane region was decreased by brefeldin-A or BAPTA-AM. Cleavage of VAMP2 with tetanus toxin (TeNT) did not prevent delivery of TRPC3 to the plasma membrane region but reduced its surface expression. TeNT also decreased carbachol and OAG, but not thapsigargin, stimulated Ca2+ influx. Importantly, carbachol, not thapsigargin, increased surface expression of TRPC3 that was attenuated by TeNT and not by BAPTA. In aggregate, these data suggest that VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to carbachol-stimulation of Ca2+ influx.  相似文献   
662.
Uncontrolled hydrochloric acid secretion and ulceration of the stomach mucosa due to various factors are serious global problems. Although the mechanism of acid secretion from the parietal cell is now well understood, the processes involved in gastric ulceration are still not clear. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and due to use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species, especially the hydroxyl radical. A number of excellent drugs have proven useful in controlling hyperacidity and ulceration but their long-term use is associated with disturbing side-effects. Hence, the search is still on to find a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a therapeutic agent to reduce gastric hyperacidity and ulcers. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal secretory product, in protecting against gastric lesions. In experimental studies, melatonin has been shown to be effective in reducing mucosal breakdown and ulcer formation in a wide variety of situations. Additionally, the low toxicity of melatonin supports further investigation of this molecule as a gastroprotective agent. Finally, we include a commentary on how melatonin research with respect to gastric pathophysiology can move forward with a view of eventually using this indole as a therapeutic agent to control gastric ulceration in humans.  相似文献   
663.
The objective of the present study is to delineate the role of active site arginine and histidine residues of horseradish peroxidase (HRP) in controlling iodide oxidation using chemical modification technique. The arginine specific reagent, phenylglyoxal (PGO) irreversibly blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 25.12 min-1 M-1. Radiolabelled PGO incorporation studies indicate an essential role of a single arginine residue in enzyme inactivation. The enzyme can be protected both by iodide and an aromatic donor such as guaiacol. Moreover, guaiacol-protected enzyme can oxidise iodide and iodide-protected enzyme can oxidise guaiacol suggesting the regulatory role of the same active site arginine residue in both iodide and guaiacol binding. The protection constant (Kp) for iodide and guaiacol are 500 and 10 M respectively indicating higher affinity of guaiacol than iodide at this site. Donor binding studies indicate that guaiacol competitively inhibits iodide binding suggesting their interaction at the same binding site. Arginine-modified enzyme shows significant loss of iodide binding as shown by increased Kd value to 571 mM from the native enzyme (Kd = 150 mM). Although arginine-modified enzyme reacts with H2O2 to form compound II presumably at a slow rate, the latter is not reduced by iodide presumably due to low affinity binding.The role of the active site histidine residue in iodide oxidation was also studied after disubstitution reaction of the histidine imidazole nitrogens with diethylpyrocarbonate (DEPC), a histidine specific reagent. DEPC blocks iodide oxidation following pseudofirst order kinetics with second order rate constant of 0.66 min-1 M-1. Both the nitrogens (, ) of histidine imidazole were modified as evidenced by the characteristic peak at 222 nm. The enzyme is not protected by iodide suggesting that imidazolium ion is not involved in iodide binding. Moreover, DEPC-modified enzyme binds iodide similar to the native enzyme. However, the modified enzyme does not form compound II but forms compound I only with higher concentration of H2O2 suggesting the catalytic role of this histidine in the formation and autoreduction of compound I. Interestingly, compound I thus formed is not reduced by iodide indicating block of electron transport from the donor to the compound I. We suggest that an active site arginine residue regulates iodide binding while the histidine residue controls the electron transfer to the heme ferryl group during oxidation.  相似文献   
664.
Interferons (IFNs) are a family of hormone-like secretory proteins with multiple phenotypical changes, including gene expression and morphological alterations. Earlier studies have shown that IFN-activated Tyk2 kinase physical associates with p95Vav (Vav), a proto-oncogene gene product expressed in hematopoietic cells. Since Tyk2 is a cytoplasmic kinase and Vav is believed to be localized in the nuclear compartment, here we explored the possibility of Vav redistribution in IFN-alpha-activated cells, using the U266 human myeloma cell line as a model system. Using biochemical assays and in situ confocal microscopy, we demonstrate that IFN-alpha treatment triggers a rapid (10 min) translocation of Vav from the nuclear compartment to the cytoplasm. In addition, we also show the existence of IFN-alpha-induced physical interaction between Vav and Ku80, Ku80, and Tyk2, and among Vav, Ku80, and Tyk2 in the cytoplasmic compartment of IFN-stimulated cells. The observed IFN-alpha-induced association among Vav, Ku80, and Tyk2 was dependent on cellular tyrosine kinase activity. Since recently Vav has been shown to promote the GDP/GTP exchange activity of the cytoskeleton signaling molecule small GTPase Rac1 and activates its downstream signaling, our present findings raise the possibility of involvement of the small GTPase in IFN signaling leading to its biological effects, including cytoskeleton reorganization.  相似文献   
665.
Cho JH  Bandyopadhyay J  Lee J  Park CS  Ahnn J 《Gene》2000,261(2):211-219
SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase), a membrane bound Ca(2+)- /Mg(2+)- dependent ATPase that sequesters Ca(2+) into the SR/ER lumen, is one of the essential components for the maintenance of intracellular Ca(2+) homeostasis. Here we describe the identification and functional characterization of a C. elegans SERCA gene (ser-1). ser-1 is a single gene alternatively spliced at its carboxyl terminus to form two isoforms (SER-1A and SER-1B) and displays a high homology (70% identity, 80% similarity) with mammalian SERCAs. Green fluorescent protein (GFP) and whole-mount immunostaining analyses reveal that SER-1 expresses in neuronal cells, body-wall muscles, pharyngeal and vulval muscles, excretory cells, and vulva epithelial cells. Furthermore, SER-1::GFP expresses during embryonic stages and the expression is maintained through the adult stages. Double-stranded RNA injection (also known as RNAi) targeted to each SER-1 isoform results in severe phenotypic defects: ser-1A(RNAi) animals show embryonic lethality, whereas ser-1B(RNAi) results in L1 larval arrest phenotype. These findings suggest that both isoforms of C. elegans SERCA, like in mammals, are essential for embryonic development and post-embryonic growth and survival.  相似文献   
666.
667.
668.
Lasioglossins, a new family of antimicrobial peptide, have been shown to have strong antimicrobial activity with low haemo-lytic and mast cell degranulation activity, and exhibit cytotoxic activity against various cancer cells in vitro. In order to understand the active conformation of these pentadecapeptides in membranes, we have studied the interaction of Lasioglossin II (LL-II), one of the members of Lasioglossins family with membrane mimetic micelle Dodecylphosphocholine (DPC) by fluorescence, Circular Dichroism (CD) and two dimensional (2D) 1H NMR spectroscopy. Fluorescence experiments provide evidence of interaction of the N-terminal tryptophan residue of LL-II with the hydrophobic core of DPC micelle. CD results show an extended chain conformation of LL-II in water which is converted to a partial helical conformation in the presence of DPC micelle. Moreover we have determined the first three-dimensional NMR structure of LL-II bound to DPC micelle with rmsd of 0.36 Å. The solution structure of LL-II shows hydrophobic and hydrophilic core formation in peptide pointing towards different direction in the presence of DPC. This amphipathic structure may allow this peptide to penetrate deeply into the interfacial region of negatively charged membranes and leading to local membrane destabilization. Further we have elucidated the DNA binding ability of LL-II by agarose gel retardation and fluorescence quenching experiments.  相似文献   
669.
Inflammasomes are multimeric protein complexes involved in the processing of IL-1β through Caspase-1 cleavage. NLRP3 is the most widely studied inflammasome, which has been shown to respond to a large number of both endogenous and exogenous stimuli. Although studies have begun to define basic pathways for the activation of inflammasome and have been instrumental in identifying therapeutics for inflammasome related disorders; understanding the inflammasome activation at the molecular level is still incomplete. Recent functional studies indicate that microRNAs (miRs) regulate molecular pathways and can lead to diseased states when hampered or overexpressed. Mechanisms involving the miRNA regulatory network in the activation of inflammasome and IL-1β processing is yet unknown. This report investigates the involvement of miR-133a-1 in the activation of inflammasome (NLRP3) and IL-1β production. miR-133a-1 is known to target the mitochondrial uncoupling protein 2 (UCP2). The role of UCP2 in inflammasome activation has remained elusive. To understand the role of miR-133a-1 in regulating inflammasome activation, we either overexpressed or suppressed miR-133a-1 in differentiated THP1 cells that express the NLRP3 inflammasome. Levels of Caspase-1 and IL-1β were analyzed by Western blot analysis. For the first time, we showed that overexpression of miR-133a-1 increases Caspase-1 p10 and IL-1β p17 cleavage, concurrently suppressing mitochondrial uncoupling protein 2 (UCP2). Surprisingly, our results demonstrated that miR-133A-1 controls inflammasome activation without affecting the basal expression of the individual inflammasome components NLRP3 and ASC or its immediate downstream targets proIL-1β and pro-Caspase-1. To confirm the involvement of UCP2 in the regulation of inflammasome activation, Caspase-1 p10 and IL-1β p17 cleavage in UCP2 of overexpressed and silenced THP1 cells were studied. Suppression of UCP2 by siRNA enhanced the inflammasome activity stimulated by H2O2 and, conversely, overexpression of UCP2 decreased the inflammasome activation. Collectively, these studies suggest that miR-133a-1 suppresses inflammasome activation via the suppression of UCP2.  相似文献   
670.

Background

The gastro-intestinal disorders, induced by the NSAIDs including indomethacin (IND) remain unresolved medical problems. Herein, we disclose allylpyrocatechol (APC) as a potential agent against IND-gastropathy and rationalize its action mechanistically.

Methods

Mice were pre-treated with APC for 1 h followed by IND (18 mg kg− 1) administration, and the ulcer-prevention capacity of APC was evaluated on the 3rd day by histology. Its effect on the inflammatory (MPO, cytokines, adhesion molecules), ulcer-healing (COX, prostaglandins, growth factors and their receptors) and signaling parameters (NF-κB and MAPKs) were assessed by immunoblots/mRNA, and ELISA at the time points of their maximal changes due to IND administration.

Results

IND induced oxidative stress, triggering mucosal TNF-α that activated NF-κB and JNK MAPK signaling in mice. These increased the pro-inflammatory biochemical parameters, but reduced the healing factors. APC reversed all the adverse effects to prevent gastric ulceration. APC (5 mg kg− 1), trolox (50 mg kg− 1) and NAC (250 mg kg− 1) showed similar protection that was better than that by misoprostol (5 μg kg− 1) and omeprazole (3 mg kg− 1).

Conclusions

The anti-ulcer effect of APC can be primarily attributed to its antioxidant action that helped in controlling various inflammatory parameters and augmenting angiogenesis.

General significance

Given that APC is an effective, non-toxic antioxidant with appreciable natural abundance, further evaluation of its pharmacokinetics and dynamics would help in promoting it as a new anti-inflammatory agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号