首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   24篇
  2021年   2篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   13篇
  2011年   12篇
  2010年   11篇
  2009年   19篇
  2008年   17篇
  2007年   25篇
  2006年   14篇
  2005年   11篇
  2004年   15篇
  2003年   17篇
  2002年   19篇
  2001年   10篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   9篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1965年   2篇
  1914年   1篇
  1911年   1篇
  1909年   1篇
排序方式: 共有374条查询结果,搜索用时 218 毫秒
91.
We report here the sequences of oligonucleotides released by T1-ribonuclease digestion of the 16S ribosomal RNA's (rRNA's) of unicellular cyanobacteria Agmenellum quadruplicatum (strain BG-1) and Synechococcus 7502. We compare them with sequences previously obtained for the 16S RNA's of six other cyanobacteria and two chloroplasts, and conclude that: (i) Synechocystis-like unicells form a discrete cluster which also (and surprisingly) includes Agmenelium quadruplicatum, usually considered to be a Synechococcus; (ii) filamentous cyanobacteria of the genera Nostoc and Fischerella arose from within the Synechocystis group; (iii) phylogenetic diversity (and hence presumably evolutionary antiquity) within the Synechococcus group is very great; and (iv) red algal chloroplasts are of definite cyanobacterial origin, while Euglena chloroplasts are of separate and quite possibly noncyanobacterial origin. We also present the results of a computer-aided search among the 10 oligonucleotide 'catalogues' for families of related but nonidentical sequences. Examination of these families reinforces the above conclusions.  相似文献   
92.
Excretion rates of urinary free cortisol were studied in 20 men assigned to four treadmill exercise groups: walking at 3 mph for 10 min or 30 min, or running at 7.5 mph for 10 min or 30 min. Free cortisol in urine was measured before and 30, 60, and 90 min after exercise, and again on a control day. Patterns of free-cortisol excretions after exercise at 7.5 mph for 10 and 30 min were significantly different from the control day (P less than 0.05) with the largest changes occurring in the 30-min group. Exercise and control patterns were not different for the other two conditions (P greater than 0.05). Within the 7.5 mph-30 min group the postexercise cortisol excretion rates were directly related to the relative intensity of exercise (%VO2max) and the respiratory exchange ratio. It is concluded that changes in free cortisol excretion rates depend on the duration as well as the intensity of exercise.  相似文献   
93.
The facultatively chemoheterotrophic blue-green bacterium Aphanocapsa 6714 accumulates two novel, stable ribonucleic acid species when deprived of sources of carbon and energy. At least one of these species is nonribosomal.  相似文献   
94.
Summary A codon-based approach to estimating the number of variable sites in a protein is presented. When first and second positions of codons are assumed to be replacement positions, a capture-recapture model can be used to estimate the number of variable codons from every pair of homologous and aligned sequences. The capture-recapture estimate is compared to a maximum likelihood estimate of the number of variable codons and to previous approaches that estimate the number of variable sites (not codons) in a sequence. Computer simulations are presented that show under which circumstances the capture-recapture estimate can be used to correct biases in distance matrices. Analysis of published sequences of two genes, calmodulin and serum albumin, shows that distance corrections that employ a capture-recapture estimate of the number of variable sites may be considerably different from corrections that assume that the number of variable sites is equal to the total number of positions in the sequence. Offprint requests to: A. Sidow  相似文献   
95.
L Bonen  S Bird 《Gene》1988,73(1):47-56
The nucleotide sequence of the wheat mitochondrial gene for subunit 6 (atp6) of the F1F0 ATPase complex has been determined. Unlike bacterial, chloroplast or animal/fungal mitochondrial atp6 counterparts, which encode proteins of about 230-270 amino acids, the wheat mitochondrial atp6 homologue comprises the latter part of an open reading frame (ORF) of 386 codons. The ATP6 protein may therefore by synthesized with a long N-terminal presequence. This is supported by the finding that the ORF is preceded by a conserved sequence block closely related to ones preceding several other actively transcribed wheat mitochondrial protein-coding genes. The fused upstream ORF is similar in length, but unrelated in sequence, to those preceding the maize and tobacco mitochondrial atp6 genes. In wheat, the atp6 gene is located on a recombinationally active repeated DNA element, whose length of 1.4 kb corresponds approximately to that of the atp6 mRNA. A comparison of the wheat and maize ATP6 sequences reveals unexpectedly high divergence in the region corresponding to the mature N-terminal domain and may reflect mitochondrial DNA rearrangements during atp6 gene evolution in monocotyledonous plants.  相似文献   
96.
Increasing evidence has implicated the membrane protein CD36 (FAT) in binding and transport of long chain fatty acids (FA). To determine the physiological role of CD36, we examined effects of its overexpression in muscle, a tissue that depends on FA for its energy needs and is responsible for clearing a major fraction of circulating FA. Mice with CD36 overexpression in muscle were generated using the promoter of the muscle creatine kinase gene (MCK). Transgenic (MCK-CD36) mice had a slightly lower body weight than control litter mates. This reflected a leaner body mass with less overall adipose tissue, as evidenced by magnetic resonance spectroscopy. Soleus muscles from transgenic animals exhibited a greatly enhanced ability to oxidize fatty acids in response to stimulation/contraction. This increased oxidative ability was not associated with significant alterations in histological appearance of muscle fibers. Transgenic mice had lower blood levels of triglycerides and fatty acids and a reduced triglyceride content of very low density lipoproteins. Blood cholesterol levels were slightly lower, but no significant decrease in the cholesterol content of major lipoprotein fractions was measured. Blood glucose was significantly increased, while insulin levels were similar in the fed state and higher in the fasted state. However, glucose tolerance curves, determined at 20 weeks of age, were similar in control and transgenic mice. In summary, the study documented, in vivo, the role of CD36 to facilitate cellular FA uptake. It also illustrated importance of the uptake process in muscle to overall FA metabolism and glucose utilization.  相似文献   
97.
Because insulin has been shown to stimulate long-chain fatty acid (LCFA) esterification in skeletal muscle and cardiac myocytes, we investigated whether insulin increased the rate of LCFA transport by altering the expression and the subcellular distribution of the fatty acid transporters FAT/CD36 and FABPpm. In cardiac myocytes, insulin very rapidly increased the expression of FAT/CD36 protein in a time- and dose-dependent manner. During a 2-h period, insulin (10 nM) increased cardiac myocyte FAT/CD36 protein by 25% after 60 min and attained a maximum after 90-120 min (+40-50%). There was a dose-dependent relationship between insulin (10(-12) to 10(-7) M) and FAT/CD36 expression. The half-maximal increase in FAT/CD36 protein occurred at 0.5 x 10(-9) M insulin, and the maximal increase occurred at 10(-9) to 10(-8) M insulin (+40-50%). There were similar insulin-induced increments in FAT/CD36 protein in cardiac myocytes (+43%) and in Langendorff-perfused hearts (+32%). In contrast to FAT/CD36, insulin did not alter the expression of FABPpm protein in either cardiac myocytes or the perfused heart. By use of specific inhibitors of insulin-signaling pathways, it was shown that insulin-induced expression of FAT/CD36 occurred via the PI 3-kinase/Akt insulin-signaling pathway. Subcellular fractionation of cardiac myocytes revealed that insulin not only increased the expression of FAT/CD36, but this hormone also targeted some of the FAT/CD36 to the plasma membrane while concomitantly lowering the intracellular depot of FAT/CD36. At the functional level, the insulin-induced increase in FAT/CD36 protein resulted in an increased rate of palmitate transport into giant vesicles (+34%), which paralleled the increase in plasmalemmal FAT/CD36 (+29%). The present studies have shown that insulin regulates protein expression of FAT/CD36, but not FABPpm, via the PI 3-kinase/Akt insulin-signaling pathway.  相似文献   
98.
We have examined the independent and combined effects of insulin insufficiency (streptozotocin (STZ)-induced diabetes, 85 mg/kg i.p.) and reduced muscle activity (denervation) (7 days) on basal, insulin-stimulated and contraction-stimulated glucose transport in rat muscles (soleus, red and white gastrocnemius). There were four treatments: control, denervated, diabetic, and denervated + diabetic muscles. Contraction-stimulated glucose transport was lowered (~ 50%) (p < 0.05) to the same extent in all experimental groups. In contrast, there was a much smaller reduction insulin-stimulated glucose transport in muscles from diabetic animals (18-24% reduction, p < 0.05) than in denervated muscles (40-60% reduction, p < 0.05) and in denervated + diabetic muscles (40-60% reduction, p < 0.05). GLUT-4 mRNA reduction was greatest in denervated + diabetic muscles (~ -75%, p < 0.05). GLUT-4 protein was decreased (p < 0.05) to a similar extent in all three experimental conditions (~ -30-40%). In conclusion, (1) muscle inactivity (denervation) and STZ-induced diabetes had similar effects on reducing contraction-stimulated glucose transport, but (2) muscle inactivity (denervation), rather than severe diabetes, produced a 2-fold greater impairment in skeletal muscle insulin-stimulated glucose transport.  相似文献   
99.
MHC class I molecules expressed on cell surfaces are composed of H chain, beta2-microglobulin and any of a vast array of peptides. The role of peptide in the recognition of HLA class I by serum HLA Abs is unknown. In this study, the solid-phase assay of a series (n = 11) of HLA-A2-reactive, pregnancy-induced, human mAbs on a panel (n = 12) of recombinant monomeric HLA-A2 molecules, each containing a single peptide, revealed peptide selectivity of the mAbs. The flow cytometry membrane staining intensities on the HLA-A2-transduced cell line K562, caused by these mAbs, correlated with the number of monomer species detected by the mAbs. Flow cytometry staining on HLA-A2-bearing cell lines of a variety of lineages was indicative of tissue selectivity of these HLA-A2 mAbs. This tissue selectivity suggests that the deleterious effect on allografts is confined to alloantibodies recognizing only HLA class I loaded with peptides that are derived from tissue-specific and household proteins. Since Abs that are only reactive with HLA loaded with irrelevant peptides are expected to be harmless toward allografts, the practice of HLA Ab determination on lymphocyte-derived HLA deserves reconsideration.  相似文献   
100.
ClC-5 is a member of the ClC family of voltage-gated chloride channels. Loss-of-function mutations of its corresponding gene (CLCN5) cause Dents disease, an X-linked kidney disorder, characterized by low-molecular weight proteinuria, hypercalciuria, nephrocalcinosis/nephrolithiasis, and progressive renal failure. Here, we examined the effect of different mutations on function and cellular trafficking of the recombinant protein. Mutant CLCN5 cDNAs were generated by site directed mutagenesis for two premature stop codon variants (R347X and M517IfsX528), and several missense mutations (C221R, L324R, G462 V, and R516 W). We also tested L521R (instead of L521RfsX526 observed) and mutants G506E and R648X (previously reported by others). After heterologous expression in Xenopus oocytes, ClC-5 channel activity and surface expression were determined by two-electrode voltage-clamp analysis and ClC-5 surface ELISA, respectively. Except for the R516 W and R648X variants, none of the mutated proteins induced functional chloride currents or reached the plasma membrane. This is readily understandable for the truncation mutations. Yet, the tested missense mutations are distributed over different transmembrane regions, implying that correct channel structure and orientation in the membrane is not only a prerequisite for proper ClC-5 function but also for Golgi exit. Interestingly, the R648X mutant although functionally compromised, displayed a significant increase in surface expression. This finding might be explained by the deletion of a ClC-5 carboxy-terminal PY-like internalization signal, which in turn impairs channel removal from the membrane. Our observations further imply that recruitment of ClC-5 to alternative routes (plasma membrane or early endosomes) in the trans-Golgi network is mediated via different signal sequences.Electronic Supplementary Material Supplementary material is available for this article at .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号