首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   350篇
  免费   24篇
  2021年   2篇
  2019年   4篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   9篇
  2013年   13篇
  2012年   13篇
  2011年   12篇
  2010年   11篇
  2009年   19篇
  2008年   17篇
  2007年   25篇
  2006年   14篇
  2005年   11篇
  2004年   15篇
  2003年   17篇
  2002年   19篇
  2001年   10篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   6篇
  1993年   5篇
  1992年   8篇
  1991年   8篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   9篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1972年   2篇
  1970年   2篇
  1965年   2篇
  1914年   1篇
  1911年   1篇
  1909年   1篇
排序方式: 共有374条查询结果,搜索用时 31 毫秒
71.
Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant science and applied breeding research. Concurrently, high‐throughput plant phenotyping is becoming widely adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, challenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standardize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we review the state of the art regarding genome assembly and the future potential of pangenomics in plant research. We also describe the necessity of standardizing and describing phenotypic studies using the Minimum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait?trait correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the golden future of machine learning and their potential in linking phenotypes to genomic features.  相似文献   
72.
? Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. ? In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. ? The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. ? This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms.  相似文献   
73.
74.
Plant mitochondrial group II introns do not all possess hallmark ribozymic features such as the bulged adenosine involved in lariat formation. To gain insight into their splicing pathways, we have examined the physical form of excised introns in germinating wheat embryos. Using RT–PCR and cRT–PCR, we observed conventional lariats consistent with a two-step transesterification pathway for introns such as nad2 intron 4, but this was not the case for the cox2 intron or nad1 intron 2. For cox2, we detected full-length linear introns, which possess non-encoded 3′terminaladenosines, as well as heterogeneous circular introns, which lack 3′ nucleotide stretches. These observations are consistent with hydrolytic splicing followed by polyadenylation as well as an in vivo circularization pathway, respectively. The presence of both linear and circular species in vivo is supported by RNase H analysis. Furthermore, the nad1 intron 2, which lacks a bulged nucleotide at the branchpoint position, comprised a mixed population of precisely full-length molecules and circular ones which also include a short, discrete block of non-encoded nucleotides. The presence of these various linear and circular forms of excised intron molecules in plant mitochondria points to multiple novel group II splicing mechanisms in vivo.  相似文献   
75.
An increased rate of fatty acid transport into skeletal muscle has been has been linked to the accumulation of intramuscular lipids and insulin resistance, and red muscles are more susceptible than white muscles in developing fatty acid-mediated insulin resistance. Therefore, we examined in Zucker diabetic fatty (ZDF) rats, relative to lean rats, 1) whether rates of fatty acid transport and transporters (FAT/CD36 and FABPpm) were upregulated in skeletal muscle during the transition from insulin resistance (week 6) to type 2 diabetes (weeks 12 and 24), 2) whether such changes occurred primarily in red skeletal muscle, and 3) whether changes in FAT/CD36 and GLUT4 were correlated. In red muscles of ZDF compared with lean rats, the rates of fatty acid transport were upregulated (+66%) early in life (week 6). Compared with the increase in fatty acid transport in lean red muscle from weeks 12-24 (+57%), the increase in fatty acid transport rate in ZDF red muscle was 50% greater during this same period. In contrast, no differences in fatty acid transport rates were observed in the white muscles of lean and ZDF rats at any time (weeks 6-24). In red muscle only, there was an inverse relationship between FAT/CD36 and GLUT4 protein expression as well as their plasmalemmal content. These studies have shown that, 1) before the onset of diabetes, as well as during diabetes, fatty acid transport and FAT/CD36 expression and plasmalemmal content are upregulated in ZDF rats, but importantly, 2) these changes occurred only in red, not white, muscles of ZDF rats.  相似文献   
76.
77.

Background

Predictive models of peptide-Major Histocompatibility Complex (MHC) binding affinity are important components of modern computational immunovaccinology. Here, we describe the development and deployment of a reliable peptide-binding prediction method for a previously poorly-characterized human MHC class I allele, HLA-Cw*0102.

Methodology/Findings

Using an in-house, flow cytometry-based MHC stabilization assay we generated novel peptide binding data, from which we derived a precise two-dimensional quantitative structure-activity relationship (2D-QSAR) binding model. This allowed us to explore the peptide specificity of HLA-Cw*0102 molecule in detail. We used this model to design peptides optimized for HLA-Cw*0102-binding. Experimental analysis showed these peptides to have high binding affinities for the HLA-Cw*0102 molecule. As a functional validation of our approach, we also predicted HLA-Cw*0102-binding peptides within the HIV-1 genome, identifying a set of potent binding peptides. The most affine of these binding peptides was subsequently determined to be an epitope recognized in a subset of HLA-Cw*0102-positive individuals chronically infected with HIV-1.

Conclusions/Significance

A functionally-validated in silico-in vitro approach to the reliable and efficient prediction of peptide binding to a previously uncharacterized human MHC allele HLA-Cw*0102 was developed. This technique is generally applicable to all T cell epitope identification problems in immunology and vaccinology.  相似文献   
78.
79.
80.
Echinococcus granulosus larvae secret a polymeric lipoprotein known as antigen B (AgB) into the metacestode hydatid fluid. Three similar AgB subunits have been previously identified (AgB1, AgB2, and AgB3), and their respective genes isolated, but the actual number of genes encoding AgB subunits remains uncertain. In this study, we characterize the variability of genes encoding the AgB2 subunit, using PCR and RT-PCR followed by cloning and sequencing. We have analyzed 32 cDNA and 34 genomic sequences from a single metacestode, showing a high degree of sequence polymorphism. In addition, we have identified a possibly new AgB subunit, which we call AgB4. Additionally, we describe an AgB2 genomic clone lacking (i) a segment corresponding to the intron and (ii) a short, 45 bp sequence within exon II. The 45 bp segment encompasses the conserved splicing signals and corresponds to a highly conserved insect promoter motif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号