首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   12篇
  2022年   2篇
  2021年   1篇
  2018年   4篇
  2017年   4篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   8篇
  2006年   9篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2001年   5篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1992年   8篇
  1991年   2篇
  1990年   8篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1975年   3篇
  1973年   4篇
  1972年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有145条查询结果,搜索用时 46 毫秒
81.
82.
83.
84.
85.
86.

Background  

The field of proteomics involves the characterization of the peptides and proteins expressed in a cell under specific conditions. Proteomics has made rapid advances in recent years following the sequencing of the genomes of an increasing number of organisms. A prominent technology for high throughput proteomics analysis is the use of liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). Meaningful biological conclusions can best be made when the peptide identities returned by this technique are accompanied by measures of accuracy and confidence.  相似文献   
87.
88.
PEGylation of IFN-alpha has been used successfully to improve the pharmacokinetic properties and efficacy of the drug. To prepare a PEGylated form of human interferon-beta-1a (IFN-beta-1a) suitable for testing in vivo, we have synthesized 20 kDa mPEG-O-2-methylpropionaldehyde and used it to modify the N-terminal alpha-amino group of the cytokine. The PEGylated protein retained approximately 50% of the activity of the unmodified protein and had significantly improved pharmacokinetic properties following intravenous administration in rats. The clearance and volume of distribution at steady state were reduced approximately 30-fold and approximately 4-fold, respectively, resulting in a significant increase in systemic exposure as determined by the area under the curve. The elimination half-life of the PEGylated protein was approximately 13-fold greater than for the unmodified protein. The unmodified and PEGylated proteins were tested for their ability to inhibit the formation of radially oriented blood vessels entering the periphery of human SK-MEL-1 melanoma tumors in athymic nude homozygous (nu/nu) mice. In a single dose comparison study, administration of 1 x 10(6) units of unmodified IFN-beta-1a resulted in a 29% reduction in vessel number, while 1 x 10(6) units of PEGylated IFN-beta-1a resulted in a 58% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle (control)-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. In a multiple versus single dose comparison study, daily administration of 1 x 10(6) units of unmodified IFN-beta-1a for 9 days resulted in a 51% reduction in vessel number, while a single dose of 1 x 10(6) units of the PEGylated protein resulted in a 66% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. Therefore, the improved pharmacokinetic properties of the modified protein translated into improved efficacy. Since unmodified IFN-beta is used for the treatment of multiple sclerosis and hepatitis C virus infection, a PEGylated form of the protein such as 20 kDa mPEG-O-2-methylpropionaldehyde-modified IFN-beta-1a may serve as a useful adjunct for the treatment of these diseases. In addition, the antiangiogenic effects of PEGylated IFN-beta-1a may be harnessed for the treatment of certain cancers, either as a sole agent or in combination with other antitumor drugs.  相似文献   
89.
Polyglutamine (polyQ) amyloid fibrils are observed in disease tissue and have been implicated as toxic agents responsible for neurodegeneration in expanded CAG repeat diseases such as Huntington's disease. Despite intensive efforts, the mechanism of amyloid toxicity remains unknown. As a novel approach to probing polyQ toxicity, we investigate here how some cellular and physical properties of polyQ amyloid vary with the chirality of the glutamine residues in the polyQ. We challenged PC12 cells with small amyloid fibrils composed of either l- or d-polyQ peptides and found that d-fibrils are as cytotoxic as l-fibrils. We also found using fluorescence microscopy that both aggregates effectively seed the aggregation of cell-produced l-polyQ proteins, suggesting a surprising lack of stereochemical restriction in seeded elongation of polyQ amyloid. To investigate this effect further, we studied chemically synthesized d- and l-polyQ in vitro. We found that, as expected, d-polyQ monomers are not recognized by proteins that recognize l-polyQ monomers. However, amyloid fibrils prepared from d-polyQ peptides can efficiently seed the aggregation of l-polyQ monomers in vitro, and vice versa. This result is consistent with our cell results on polyQ recruitment but is inconsistent with previous literature reports on the chiral specificity of amyloid seeding. This chiral cross-seeding can be rationalized by a model for seeded elongation featuring a “rippled β-sheet” interface between seed fibril and docked monomers of opposite chirality. The lack of chiral discrimination in polyQ amyloid cytotoxicity is consistent with several toxicity mechanisms, including recruitment of cellular polyQ proteins.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号