首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682篇
  免费   41篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   26篇
  2020年   15篇
  2019年   14篇
  2018年   21篇
  2017年   20篇
  2016年   23篇
  2015年   38篇
  2014年   40篇
  2013年   49篇
  2012年   65篇
  2011年   63篇
  2010年   35篇
  2009年   26篇
  2008年   42篇
  2007年   47篇
  2006年   22篇
  2005年   24篇
  2004年   30篇
  2003年   20篇
  2002年   14篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1961年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有723条查询结果,搜索用时 15 毫秒
601.
Aluminum toxicity is a major factor in limiting growth in plants in most strongly acid soils. Toxic effects on plant growth have been attributed to several physiological and biochemical pathways, although the precise mechanism is still not fully understood. In general, root elongation is hampered through reduced mitotic activity induced by Al, with subsequent increase in susceptibility to drought. The initial site of uptake is usually the root cap and the mucilaginous secretion covering the epidermal cells. Al ions bind very specifically to the mucilage by exchange adsorption on the polyuronic acid, complexing with the pectic substances and by the formation of polyhydroxy forms, increasing the number of Al atoms per positive charge. Toxicity has been suggested to be initiated at the sites of mucopolysaccharide synthesis. Al is absorbed on all Ca-binding sites on the cell surface. In the intact tissues, most of the Al is bound to the pectic substances of the cell wall and a part to the nucleic acids and cell membrane. Al is also reported to enter the plant by moving into meristematic cells via the cortex, bypassing the endodermal barrier. Being a polyvalent cation, it follows principally the apoplasmic pathway of transport through cortical cells, but may also enter the stele through the plasmalemma. Ultrastructural studies have shown the maximum accumulation to be in the epidermal and cortical cells. The interaction of Al with different systems follows different pathways. The plasma membrane at the outer boundary of the root cell is a potential target and its physical properties can be altered by Al through interaction with membrane-bound ATPase, lipids, carbohydrates and proteins. The Golgi apparatus has been suggested as the primary site of action, followed by damage to the plasmalemma. Aluminum interferes with the uptake, transport and use of several essential elements, including Cu, Zn, Ca, Mg, Mn, K, P and Fe. Excess of Al reduces the uptake of certain elements and increases that of others, the patterns being dependent on the element, the plant part and species involved. A major factor is the pH concentration. At an acid pH, below 5.5, the antagonism between Ca and Al is probably the most important factor affecting Ca uptake by plants. The molecular mechanism of tolerance of Al is as yet not clear. Tolerant plants reduce the absorption by the root or detoxify Al after absorption. Al tolerant plants may be grouped into those with higher Al concentrations in tops and those with less. In the latter, more Al is entrapped in roots. Uptake of Al may be reduced by binding to cell wall or to membrane lipid. Tolerance may be different in different species and seems to be controlled by one or more genes. Absorption of Al in non-metabolic conditions is affected only slightly by temperature. Anaerobic conditions, like the presence of nitrogen and metabolic inhibitors, damage the endodermal membrane barrier, increasing the uptake and enhancing injurious effects. Aluminum also causes morphological damage to plant parts. It affects photosynthesis by lowering chlorophyll content and reducing electron flow. Reduced respiratory activity might be due to reduced metabolic energy requirement. Protein synthesis is decreased probably due to effect on ribosome distribution at endoplasmic reticulum. Aluminum is known to bind to DNA and nuclei. However, its penetrance to DNA of mitotically active centers is slow. On accumulating in roots, it initially inhibits mitotic activity, possibly through affecting the integrated control function of the root meristem. Aluminum toxicity in acid soil is of special importance due to the destruction of components of forest ecosystems under specific conditions. It reduces biomass yield and tree growth and represses litter-degrading microflora. Further information is required on the factors affecting membrane permeability, distribution and accumulation of Al in different plant parts and different species. Al tolerance may be studied with relation to the presence of different ligands, nitrogen metabolism (nitrate reductase and protein accumulation), nitrogen tolerance in relation to pH change and metal ion activities, the role of Ca and P and interference with water relations and litter degradation.  相似文献   
602.
A tissue culture procedure was developed for the establishment and propagation of a colchi-autotetraploid of Rauvolfia serpentina for possible commercial exploitation. Multiplication of autotetraploid shoots was obtained either through axillary bud elongation on Murashige and Skoog [1] medium (MS) containing 2.65 M (0.5 mgl–1) -naphthaleneacetic acid and 0.33 M (0.05 mgl–1) kinetin, or via multiple shoot formation on MS medium supplemented with 4.44 M (1.0 mgl–1) 6-benzylaminopurine and 0.53 M (0.1 mgl–1) -naphthaleneacetic acid. Rooting could be induced by transferring the shoots to MS medium containing 7.95 M (1.5 mgl–1) -naphthaleneacetic acid alone. The plantlets, thus formed, were tetraploid in nature by cytological observations of the root tips. They exhibited 80–90% success in establishment under glass house and field conditions.  相似文献   
603.
Antimony trioxide (Sb2O3), in aqueous suspension, was administered by gavaging to mice and monitored for chromosomal aberrations in bone marrow and sperm head abnormalities in germ cells. Acute exposur to the doses followed by observations after 6, 12, 18 and 24 h did not show any clastogenic effects. Chronic exposure daily to different doses for periods up to 21 days induced chromosornal aberrations in bone marrow. The frequencies were dose-dependent to a significant extent but no relationship could be seen with the sex of the animal. The findings indicate the harmful effects of cumulative exposure for prolonged periods to Sb2O3, which is being increasingly used in various industries.  相似文献   
604.
605.
Low ODAP somaclones have been evaluated for physiological and biochemical parameters especially in relation to attributes that lead to increased biomass production. All the somaclones during development had substantially lower ODAP content in leaves as compared to parent P24. Considerable variation was observed in relation to leaf width, leaf length, internodal length and leaf area. Somaclone Bio L12 had the highest whereas parent P24 and Bi0164 had the least leaf area. Harvest index was the highest and biomass production was the lowest in the Bio 164. Bio L08 gave the highest seed yield. Photosynthetic rates were also higher in Bio L12, although no significant positive correlation was observed in leaf photosynthesis and seed yield. The differences in physiolpgical and biochemical parameters indicate the possibility of development of high yielding genotypes. The results in present investigation show differences in photosynthetic rate, leaf characteristics, seed yield and ODAP content among somalones and parent. Somaclones with extremely low ODAP content with variability in leaf morphology and photosynthetic rate is indicative of variation induced during plant tissue culture.  相似文献   
606.
Five oligosaccharides were isolated in pure state from the lipopolysaccharide of Vibrio cholera, Inaba 569 B, and their structures were elucidated. More-detailed information regarding the partial structure of the lipopolysaccharide, containing glucose, mannose, glucuronic acid, 2-amino-2-deoxyglucose, d-glycero-l-manno-heptose, and d-glycero-l-gluco-heptose, was obtained through Smith degradation, chromium trioxide oxidation, and graded hydrolysis studies of the lipopolysaccharide and its derived products.  相似文献   
607.
Due to ease of formation of cyanide under prebiotic conditions, cyanide ion might have formed stable complexes with transition metal ions on the primitive earth. In the course of chemical evolution insoluble metal cyano complexes, which settled at the bottom of primeval sea could have formed peptide and metal amino acid complexes through adsorption processes of amino acids onto these metal cyano complexes.Adsorption of amino acids such as glycine, aspartic acid, and histidine on copper ferrocyanide and zinc ferrocyanide have been studied over a wide pH range of 3.6 – 8.5. Amino acids were adsorbed on the metal ferrocyanide complexes for different time periods. The progress of the adsorption was followed spectro-photometrically using ninhydrin reagent. Histidine was found to show maximum adsorption on both the adsorbents at neutral pH. Zinc ferrocyanide exhibits good sorption behaviour for all the three amino acids used in these investigations.  相似文献   
608.
609.
Singhal SS  Yadav S  Singhal J  Sahu M  Sehrawat A  Awasthi S 《FEBS letters》2008,582(23-24):3408-3414
This study was undertaken to characterize the consequences of Ral-interacting protein (RLIP76)-loss with respect to drug resistance, transport, radiation resistance, and alternative transport mechanisms in mouse embryonic fibroblasts (MEFs). MEFs were derived from RLIP76+/+, RLIP76+/- and RLIP76-/- mice. The transport of doxorubicin (DOX), colchicine (COL), leukotriene C4 and dinitrophenyl S-glutathione (DNP-SG) was analyzed in inside-out vesicles (IOVs) prepared from MEFs. We used immuno-titration of transport activity to determine the contribution of RLIP76, MRP1, and p-glycoprotein (Pgp) towards total transport activity. Loss of RLIP76 alleles resulted in significant sensitization to radiation, DOX, cisplatin, and vinorelbine (VRL). In IOVs prepared from MEFs, we observed a stepwise loss of transport activity. Loss of RLIP76 confers sensitivity to xenobiotics and radiation due to the loss of a common transport mechanism for glutathione-electrophile conjugates and xenobiotics.  相似文献   
610.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号