首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   41篇
  719篇
  2024年   2篇
  2023年   3篇
  2022年   7篇
  2021年   26篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   20篇
  2016年   23篇
  2015年   38篇
  2014年   40篇
  2013年   49篇
  2012年   64篇
  2011年   62篇
  2010年   34篇
  2009年   26篇
  2008年   41篇
  2007年   47篇
  2006年   22篇
  2005年   24篇
  2004年   30篇
  2003年   20篇
  2002年   14篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1961年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有719条查询结果,搜索用时 41 毫秒
101.
102.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
103.
Dietary restriction (DR) was reported to either have no effect or reduce the lifespan of the majority of the 41‐recombinant inbred (RI) lines studied by Liao et al. (Aging Cell, 2010, 9, 92). In an appropriately power longevity study (n > 30 mice/group), we measured the lifespan of the four RI lines (115‐RI, 97‐RI, 98‐RI, and 107‐RI) that were reported to have the greatest decrease in lifespan when fed 40% DR. DR increased the median lifespan of female RI‐115, 97‐RI, and 107‐RI mice and male 115‐RI mice. DR had little effect (<4%) on the median lifespan of female and male 98‐RI mice and male 97‐RI mice and reduced the lifespan of male 107‐RI mice over 20%. While our study was unable to replicate the effect of DR on the lifespan of the RI mice (except male 107‐RI mice) reported by Liao et al. (Aging Cell, 2010, 9, 92), we found that the genotype of a mouse had a major impact on the effect of DR on lifespan, with the effect of DR ranging from a 50% increase to a 22% decrease in median lifespan. No correlation was observed between the changes in either body composition or glucose tolerance induced by DR and the changes observed in lifespan of the four RI lines of male and female mice. These four RI lines of mice give the research community a unique resource where investigators for the first time can study the anti‐aging mechanism of DR by comparing mice in which DR increases lifespan to mice where DR has either no effect or reduces lifespan.  相似文献   
104.
105.
106.
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.  相似文献   
107.
The N-terminal 'unstructured' region of the human prion protein [PrP((90-231))] is believed to play a role in its aggregation because mutations in this region are associated with seeding-independent deposition disorders like Gerstmann-Straussler-Scheinker disease (GSS). One way of examining the effects of such mutations is to search combinatorially derived libraries for sequence variants showing a propensity to aggregate and/or the ability to interact with prion molecules folded into a beta-sheet-based conformation (i.e., beta-PrP or PrP(Sc)). We created a library of 1.8x10(7) variants randomized between positions 101 and 112, displayed it on filamentous bacteriophage, and 'spiked' it with a approximately 25% population of phages-bearing wild-type prion (wt-PrP). Screening was performed through four rounds of biopanning and amplification against immobilized beta-PrP, and yielded three beta-PrP-binding populations: wt-PrP (26% representation) and two non-wt-PrP variants ( approximately 10% and approximately 64% representation, respectively). The remarkable enrichment of one non-wt-PrP variant (MutPrP) incorporating residues KPSKPKTNMKHM in place of KGVLTWFSPLWQ, despite its initial representation at a 5 million-fold lower level than wt-PrP, caused us to produce it and discover: (i) that it readily aggregates into thioflavin-T-binding amyloids between pH 6.0 and 9.0, (ii) that it adopts a soluble beta-sheet based monomeric structure at pH 10.0, (iii) that it is less thermally stable and more compact than wt-PrP, and (iv) that it displays significantly greater resistance to proteolysis than wt-PrP. Our results suggest that sequence variations in the 101-112 region can indeed predispose the prion for aggregation.  相似文献   
108.
109.
110.
Autism is a developmental disability causing learning and memory disorder. The heart of the search for a cure for this syndrome is the need to understand dendrite branch patterning, a process crucial for proper synaptic transmission. Due to the association of snapin with the SNARE complex and its role in synaptic transmission it is reported as a potential drug target for autism therapies. We wish to impart the noesis of the 3D structure of the snapin protein, and in this chase we predict the native structure from its sequence of amino acid residues using the classical Comparative protein structure modeling methods. The predicted protein model can be of great assistance in understanding the structural insights, which is necessary to understand the protein function. Understanding the interactions between snapin and SNARE complex is crucial in studying its role in the neurotransmitter release process. We also presented a computational model that shows the interaction between the snapin and SNAP-25 protein, a part of the larger SNARE complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号