首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   41篇
  2024年   2篇
  2023年   2篇
  2022年   7篇
  2021年   26篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   20篇
  2016年   23篇
  2015年   38篇
  2014年   40篇
  2013年   49篇
  2012年   64篇
  2011年   62篇
  2010年   34篇
  2009年   26篇
  2008年   41篇
  2007年   47篇
  2006年   22篇
  2005年   24篇
  2004年   30篇
  2003年   20篇
  2002年   14篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1961年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有718条查询结果,搜索用时 5 毫秒
131.
132.
133.
Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom’s helicase BLM that participates in a larger protein complex (‘BLMcx’) containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI.  相似文献   
134.
  相似文献   
135.
The interaction between two group IV metals, the highly toxic lead and the relatively inactive and low toxic zirconium, was studied in the bone marrow chromosomes ofMus musculus in vivo. Low and high doses of zirconium oxychloride were fed orally to the experimental mice (i) 2 h before, (ii) 2 h after or (iii) together with different doses of lead nitrate. Protection against lead-induced clastogenicity was observed only when the lower dose of zirconium was administered prior to lead. All other combinations gave an additive or synergistic effect as was seen by significant increases in the frequencies of chromosomal aberrations.  相似文献   
136.
Zirconium     
Summary The action of Zirconium (Zr) on biological systems presents an enigma. It is ubiquitous, being present in nature in amounts higher than most trace elements. It is taken up by plants from soil and water and accumulated in certain tissues. The entry into animal systems in vivo is related to the mode of exposure and the concentration in the surrounding environment. Retention is initially in soft tissues and then slowly in the bone. The metal is able to cross the blood brain-barrier and is deposited in the brain and the placental barrier to enter milk. The daily human uptake has been known to be as high as 125 mg. The level of toxicity has been found to be moderately low, both in histological and cytological studies. The toxic effects induced by very high concentrations are nonspecific in nature. Despite the presence and retention in relatively high quantities in biological systems, Zr has not yet been associated with any specific metabolic function. Very little information is available about its interaction with the compounds of the genetical systems, such as nucleic acids. Apparently, the metal is neither an essential nor toxic element in the conventional sense. However, the increasing exposure to this element through its increasing use in new materials and following radioactive fallout, has increased the importance of the study of its effects on living organisms. The tetravalent nature of the ionic state and the high stability of the compounds formed are important factors that need to be considered, as also the accumulation of this element in the brain, reminiscent of the relationship between Al3+ and Alzheimer's disease.  相似文献   
137.
MTU 1010 is a high-yielding mega-variety of rice grown extensively in India. However, it does not perform well in soils with low phosphorus (P) levels. With an objective to improve MTU 1010 for tolerance to low soil P, we have transferred Pup1, a major quantitative trait locus (QTL) associated with tolerance from another mega-variety, Swarna, through marker-assisted backcross breeding (MABB). Foreground selection of the F1 and backcross plants was performed with the co-dominant, closely linked CAPS marker, K20-2, while two flanking markers RM28011 and RM28157 were utilized for recombinant selection. At each backcross generation, positive plants were also analyzed with a set of 85 parental polymorphic SSR markers to identify the QTL-positive plants possessing maximum introgression of MTU 1010 genome. At BC2F1, the best backcross plant was selfed to generate BC2F2s. Among them, the plants homozygous for Pup1 (n?=?22) were reconfirmed using the functional marker for Pup1, viz., K46-1, and they were advanced through pedigree method of selection until BC2F6 generation. A total of five elite BC2F6 lines, possessing Pup1 and phenotypically similar to MTU 1010, were screened in the low soil P plot and normal plot (with optimum soil P levels) during wet season, 2016. All the selected lines showed better performance under low P soil with more number of productive tillers, better root system architecture, and significantly higher yield (>?390%) as compared to MTU 1010. Further, under normal soil, the lines were observed to be similar to or better than MTU 1010 for most of the agro-morphological traits and yield. This study represents the successful application of marker-assisted selection for improvement of tolerance to low soil P in a high-yielding Indian rice variety.  相似文献   
138.
Because of the decreasing fossil fuel supply and increasing greenhouse gas (GHG) emissions, microalgae have been identified as a viable and sustainable feedstock for biofuel production. The major effect of the release of wastewater rich in organic compounds has led to the eutrophication of freshwater ecosystems. A combined approach of freshwater diatom cultivation with urban sewage water treatment is a promising solution for nutrient removal and biofuel production. In this study, urban wastewater from eutrophic Hussain Sagar Lake was used to cultivate a diatom algae consortium, and the effects of silica and trace metal enrichment on growth, nutrient removal, and lipid production were evaluated. The nano-silica-based micronutrient mixture Nualgi containing Si, Fe, and metal ions was used to optimize diatom growth. Respectively, N and P reductions of 95.1% and 88.9%, COD and BOD reductions of 91% and 51% with a biomass yield of 122.5 mg L?1 day?1 and lipid productivity of 37 mg L?1 day?1 were observed for cultures grown in waste water using Nualgi. Fatty acid profiles revealed 13 different fatty acids with slight differences in their percentage of dry cell weight (DCW) depending on enrichment level. These results demonstrate the potential of diatom algae grown in wastewater to produce feedstock for renewable biodiesel production. Enhanced carbon and excess nutrient utilization makes diatoms ideal candidates for co-processes such as CO2 sequestration, biodiesel production, and wastewater phycoremediation.  相似文献   
139.
Rice straw is valuable resource that has been used as substrate for cost effective production of xylanase under solid-state fermentation by a newly isolated white rot fungi, S. commune ARC-11. Out of eleven carbon sources tested, rice straw was found most effective for the induction of xylanase that produced 4288.3?IU/gds of xylanase by S. commune ARC-11. Maximum xylanase production (6721.9?IU/gds) was observed on 8th day of incubation at temperature (30?°C), initial pH (7.0) and initial moisture content (70.0%). The supplementation of ammonium sulphate (0.08% N, as available nitrogen) enhanced the xylanase production up to 8591.4?IU/gds. The xylanase production by S. commune ARC-11 was further improved by the addition of 0.10%, (w/v) of Tween-20 as surfactant. The maximum xylanase activities were found at pH 5.0 and temperature 55?°C with a longer stability (180?min) at temperature 45, 50 and 55?°C. This xylanase preparation was also evaluated for the pre-bleaching of ethanol-soda pulp from Eulaliopsis binata. An enzyme dosage of 10?IU/g of xylanase resulted maximum decrease in kappa number (14.51%) with a maximum improvement 2.9% in ISO brightness compared to control.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号