首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   12篇
  272篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   7篇
  2017年   11篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   24篇
  2011年   15篇
  2010年   15篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1988年   4篇
  1987年   5篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1981年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
  1958年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
141.
142.
We have recently shown that acetylated tubulin interacts with plasma membrane Na(+),K(+)-ATPase and inhibits its enzyme activity in several types of cells. H(+)-ATPase of Saccharomyces cerevisiae is similarly inhibited by interaction with acetylated tubulin. The activities of both these ATPases are restored upon dissociation of the acetylated tubulin/ATPase complex. Here, we report that in plasma membrane vesicles isolated from brain synaptosomes, another P-type ATPase, plasma membrane Ca(2+)-ATPase (PMCA), undergoes enzyme activity regulation by its association/dissociation with acetylated tubulin. The presence of acetylated tubulin/PMCA complex in membrane vesicles was demonstrated by analyzing the behavior of acetylated tubulin in a detergent partition, and by immunoprecipitation experiments. PMCA is known to be stimulated by ethanol and calmodulin at physiological concentrations. We found that treatment of plasma membrane vesicles with these reagents induced dissociation of the complex, with a concomitant restoration of enzyme activity. Conversely, incubation of vesicles with exogenous tubulin induced the association of acetylated tubulin with PMCA, and the inhibition of enzyme activity. These findings indicate that activation of synaptosomal PMCA by ethanol and calmodulin involves dissociation of the acetylated tubulin/PMCA complex. This regulatory mechanism was shown to also operate in living cells.  相似文献   
143.
The association of tubulin carboxypeptidase with microtubules may be involved in the determination of the tyrosination state of the microtubules, i.e. their proportion of tyrosinated vs. nontyrosinated tubulin. We investigated the role of protein phosphatases in the association of carboxypeptidase with microtubules in COS cells. Okadaic acid and other PP1/PP2A inhibitors, when added to culture medium before isolation of the cytoskeletal fraction, produced near depletion of the carboxypeptidase activity associated with microtubules. Isolation of the native assembled and nonassembled tubulin fractions from cells treated and not treated with okadaic acid, and subsequent in vitro assay of the carboxypeptidase activity, revealed that the enzyme was dissociated from microtubules by okadaic acid treatment and recovered in the soluble fraction. There was no effect by nor-okadaone (an inactive okadaic acid analogue) or inhibitors of PP2B and of tyrosine phosphatases which do not affect PP1/PP2A activity. When tested in an in vitro system, okadaic acid neither dissociated the enzyme from microtubules nor inactivated it. In living cells, prior stabilization of microtubules with taxol prevented the dissociation of carboxypeptidase by okadaic acid indicating that dynamic microtubules are needed for okadaic acid to exert its effect. On the other hand, stabilization of microtubules subsequent to okadaic acid treatment did not reverse the dissociating effect of okadaic acid. These results suggest that dephosphorylation (and presumably also phosphorylation) of the carboxypeptidase or an intermediate compound occurs while it is not associated with microtubules, and that the phosphate content determines whether or not the carboxypeptidase is able to associate with microtubules.  相似文献   
144.
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome‐reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm‐associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome‐reduced bacterium that can fight against clinically relevant biofilm‐associated bacterial infections.  相似文献   
145.
Substance P (SP) and neurokinin A (NKA), members of the family of mammalian tachykinins, are involved in the regulation of many physiological functions and are widely distributed in mammalian tissues. In this report, the effects of prenatal melatonin on the postnatal developmental pattern of NKA, and SP, and on testosterone secretion were investigated. Also, tachykinin response to the administration of testosterone propionate (TP) was studied. The brain areas studied were medio-basal-hypothalamus, pituitary gland and striatum. Male rat offspring of control or melatonin treated mother rats were studied at different ages of the sexual development: infantile, juvenile or prepubertal periods, and pubertal period. Both groups received exogenous TP (control-offspring+TP and MEL-offspring+TP), or the vehicle (control-offspring+placebo and MEL-offspring+placebo). Hypothalamic concentrations of all peptides studied in control-offspring+placebo remained at low levels until the juvenile period, days 30-31 of age. After this age, increasing concentrations of these peptides were found, with peak values at puberty, 40-41 days of age, then declining until adulthood. In the MEL-offspring+placebo a different pattern of development was observed; hypothalamic concentrations of NKA and SP from the infantile period until the end of juvenile period were significantly higher than in control-offspring+placebo. TP administration exerted a more marked influence on MEL-offspring than on control-offspring and prevented the elevation in tachykinin concentrations associated with prenatal melatonin treatment. TP administration to control-offspring resulted in significantly reduced (P < 0.05) tachykinin concentration only at 40-41 days of age, and increased (P < 0.01) during infantile period as compared to control-offspring+placebo. Pituitary NKA concentrations were lower than in the hypothalamus. In control-offspring+placebo pituitary NKA levels did not show significant changes throughout sexual development. A different developmental pattern was observed in MEL-offspring+placebo, with significantly increased (P < 0.05) pituitary NKA concentrations at 35-36 days of age than in control-offspring+placebo. TP administration to control-offspring influenced pituitary NKA levels at the end of the infantile and pubertal periods, showing at both stages significantly higher (P < 0.05) NKA levels as compared to control-offspring+placebo. NKA levels in MEL-offspring+TP were only affected at 21-22 days of age, showing significantly increased (P < 0.01) values as compared to MEL-offspring+placebo. Striatal tachykinin concentrations in control-offspring did not undergo important modifications throughout sexual development, but during the prepubertal period they started to increase. Maternal melatonin and TP injections produced short-lived alterations during the infantile period. The results showed that prenatal melatonin delayed the postnatal testosterone secretion pattern until the end of the pubertal period and postnatal peptide secretion in brain structures. Consequently, all functions depending of the affected areas will in turn, be affected.  相似文献   
146.
147.
148.
Identifying species exhibiting variation in social organization is an important step towards explaining the genetic and environmental factors underlying social evolution. In most studied populations of the ant Leptothorax acervorum, reproduction is shared among queens in multiple queen colonies (polygyny). By contrast, reports from other populations, but based on weaker evidence, suggest a single queen may monopolize all reproduction in multiple queen colonies (functional monogyny). Here we identify a marked polymorphism in social organization in this species, by conclusively showing that functional monogyny is exhibited in a Spanish population, showing that the social organization is stable and not purely a consequence of daughter queens overwintering, that daughter queen re-adoption is frequent and queen turnover is low. Importantly, we show that polygynous and functionally monogynous populations are not genetically distinct from one another based on mtDNA and nDNA. This suggests a recent evolutionary divergence between social phenotypes. Finally, when functionally monogynous and polygynous colonies were kept under identical laboratory conditions, social organization did not change, suggesting a genetic basis for the polymorphism. We discuss the implications of these findings to the study of reproductive skew.  相似文献   
149.
The in vivo mevalonate incorporation into total nonsaponifiable lipids by chick liver was minimal after hatching and drastically increased between 1-5 days. The hepatic synthesis of different cholesterol precursors emerged sequentially after hatching. Between 1-5 days increased strongly the conversion of mevalonate into squalene and also the formation of oxygenated lanosterol derivatives from squalene. The conversion of squalene became completely active at day 8. Cholesterol formation from lanosterol derivatives was completely activated between 8-11 days. Results in this paper demonstrate for the first time the accumulation of a fraction of nonsaponifiable lipids identified as lanosterol derivatives and cholesterol precursors formed from [5-14C]mevalonate in experiments carried out in vivo. Postnatal evolution of these oxysterols may explain the great increase of 3-hydroxy-3-methylglutaryl-CoA reductase activity found in chick liver between 5-11 days, simultaneous or posterior to the diminution of the oxygenated cholesterol precursors.  相似文献   
150.
Our previous studies demonstrated that acetylated tubulin forms a complex with Na(+),K(+)-ATPase and thereby inhibits its enzyme activity in cultured COS and CAD cells. The enzyme activity was restored by treatment of cells with l-glutamate, which caused dissociation of the acetylated tubulin/Na(+),K(+)-ATPase complex. Addition of glucose, but not elimination of glutamate, led to re-formation of the complex and inhibition of the Na(+),K(+)-ATPase activity. The purpose of the present study was to elucidate the mechanism underlying this effect of glucose. We found that exposure of cells to high glucose concentrations induced: (a) microtubule formation; (b) activation of aldose reductase by the microtubules; (c) association of tubulin with membrane; (d) formation of the acetylated tubulin/Na(+),K(+)-ATPase complex and consequent inhibition of enzyme activity. Exposure of cells to sorbitol caused similar effects. Studies on erythrocytes from diabetic patients and on tissues containing insulin-insensitive glucose transporters gave similar results. Na(+),K(+)-ATPase activity was >50% lower and membrane-associated tubulin content was >200% higher in erythrocyte membranes from diabetic patients as compared with normal subjects. Immunoprecipitation analysis showed that acetylated tubulin was a constituent of a complex with Na(+),K(+)-ATPase in erythrocyte membranes from diabetic patients. Based on these findings, we propose a mechanism whereby glucose triggers a synergistic effect of tubulin and sorbitol, leading to activation of aldose reductase, microtubule formation, and consequent Na(+),K(+)-ATPase inhibition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号