首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   38篇
  416篇
  2023年   3篇
  2022年   8篇
  2021年   13篇
  2020年   4篇
  2019年   4篇
  2018年   10篇
  2017年   8篇
  2016年   13篇
  2015年   15篇
  2014年   13篇
  2013年   16篇
  2012年   32篇
  2011年   25篇
  2010年   11篇
  2009年   13篇
  2008年   26篇
  2007年   22篇
  2006年   31篇
  2005年   13篇
  2004年   16篇
  2003年   18篇
  2002年   18篇
  2001年   16篇
  2000年   24篇
  1999年   24篇
  1998年   5篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有416条查询结果,搜索用时 0 毫秒
41.
42.
Using sensitive structure similarity searches, we identify a shared alpha+beta fold, RAGNYA, principally involved in nucleic acid, nucleotide or peptide interactions in a diverse group of proteins. These include the Ribosomal proteins L3 and L1, ATP-grasp modules, the GYF domain, DNA-recombination proteins of the NinB family from caudate bacteriophages, the C-terminal DNA-interacting domain of the Y-family DNA polymerases, the uncharacterized enzyme AMMECR1, the siRNA silencing repressor of tombusviruses, tRNA Wybutosine biosynthesis enzyme Tyw3p, DNA/RNA ligases and related nucleotidyltransferases and the Enhancer of rudimentary proteins. This fold exhibits three distinct circularly permuted versions and is composed of an internal repeat of a unit with two-strands and a helix. We show that despite considerable structural diversity in the fold, its representatives show a common mode of nucleic acid or nucleotide interaction via the exposed face of the sheet. Using this information and sensitive profile-based sequence searches: (1) we predict the active site, and mode of substrate interaction of the Wybutosine biosynthesis enzyme, Tyw3p, and a potential catalytic role for AMMECR1. (2) We provide insights regarding the mode of nucleic acid interaction of the NinB proteins, and the evolution of the active site of classical ATP-grasp enzymes and DNA/RNA ligases. (3) We also present evidence for a bacterial origin of the GYF domain and propose how this version of the fold might have been utilized in peptide interactions in the context of nucleoprotein complexes.  相似文献   
43.
Lada AG  Iyer LM  Rogozin IB  Aravind L  Pavlov IuI 《Genetika》2007,43(10):1311-1327
M.E. Lobashev has brilliantly postulated in 1947 that error-prone repair contribute to mutations in cells. This was shown to be true once the mechanisms of UV mutagenesis in Escherichia coli were deciphered. Induced mutations are generated during error-prone SOS DNA repair with the involvement of inaccurate DNA polymerases belonging to the Y family. Currently, several distinct mutator enzymes participating in spontaneous and induced mutagenesis have been identified. Upon induction of these proteins, mutation rates increase by several orders of magnitude. These proteins regulate the mutation rates in evolution and in ontogeny during immune response. In jawed vertebrates, somatic hypermutagenesis occurs in the variable regions of immunoglobulin genes, leading to affinity maturation of antibodies. The process is initiated by cytidine deamination in DNA to uracil by AID (Activation-Induced Deaminase). Further repair of uracil-containing DNA through proteins that include the Y family DNA polymerases causes mutations, induce gene conversion, and class switch recombination. In jawless vertebrates, the variable lymphocyte receptors (VLR) serve as the primary molecules for adaptive immunity. Generation of mature VLRs most likely depends on agnathan AID-like deaminases. AID and its orthologs in lamprey (PmCDA1 and PMCDA2) belong to the AID/APOBEC family of RNA/DNA editing cytidine deaminases. This family includes enzymes with different functions: APOBEC1 edits RNA, APOBEC3 restricts retroviruses. The functions of APOBEC2 and APOBEC4 have not been yet determined. Here, we report a new member of the AID/APOBEC family, APOBEC5, in the bacterium Xanthomonas oryzae. The widespread presence of RNA/DNA editing deaminases suggests that they are an ancient means of generating genetic diversity.  相似文献   
44.
The bacterial CRISPR endoribonuclease Csy4 has recently been described as a potential RNA processing tool. Csy4 recognizes substrate RNA through a specific 28-nt hairpin sequence and cleaves at the 3′ end of the stem. To further explore applicability in mammalian cells, we introduced this hairpin at various locations in mRNAs derived from reporter transgenes and systematically evaluated the effects of Csy4-mediated processing on transgene expression. Placing the hairpin in the 5′ UTR or immediately after the start codon resulted in efficient degradation of target mRNA by Csy4 and knockdown of transgene expression by 20- to 40-fold. When the hairpin was incorporated in the 3′ UTR prior to the poly(A) signal, the mRNA was cleaved, but only a modest decrease in transgene expression (∼2.5-fold) was observed. In the absence of a poly(A) tail, Csy4 rescued the target mRNA substrate from degradation, resulting in protein expression, which suggests that the cleaved mRNA was successfully translated. In contrast, neither catalytically inactive (H29A) nor binding-deficient (R115A/R119A) Csy4 mutants were able to exert any of the effects described above. Generation of a similar 3′ end by RNase P-mediated cleavage was unable to rescue transgene expression independent of Csy4. These results support the idea that the selective generation of the Csy4/hairpin complex resulting from cleavage of target mRNA might serve as a functional poly(A)/poly(A) binding protein (PABP) surrogate, stabilizing the mRNA and supporting translation. Although the exact mechanism(s) remain to be determined, our studies expand the potential utility of CRISPR nucleases as tools for controlling mRNA stability and translation.  相似文献   
45.
46.
RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins.  相似文献   
47.
48.
We report an in-depth computational study of the protein sequences and structures of the superfamily of archaeo-eukaryotic primases (AEPs). This analysis greatly expands the range of diversity of the AEPs and reveals the unique active site shared by all members of this superfamily. In particular, it is shown that eukaryotic nucleo-cytoplasmic large DNA viruses, including poxviruses, asfarviruses, iridoviruses, phycodnaviruses and the mimivirus, encode AEPs of a distinct family, which also includes the herpesvirus primases whose relationship to AEPs has not been recognized previously. Many eukaryotic genomes, including chordates and plants, encode previously uncharacterized homologs of these predicted viral primases, which might be involved in novel DNA repair pathways. At a deeper level of evolutionary connections, structural comparisons indicate that AEPs, the nucleases involved in the initiation of rolling circle replication in plasmids and viruses, and origin-binding domains of papilloma and polyoma viruses evolved from a common ancestral protein that might have been involved in a protein-priming mechanism of initiation of DNA replication. Contextual analysis of multidomain protein architectures and gene neighborhoods in prokaryotes and viruses reveals remarkable parallels between AEPs and the unrelated DnaG-type primases, in particular, tight associations with the same repertoire of helicases. These observations point to a functional equivalence of the two classes of primases, which seem to have repeatedly displaced each other in various extrachromosomal replicons.  相似文献   
49.
50.

Background  

Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors) are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin, glycine, GABA, glutamate and histamine, and for Zn2+ ions. They play a central role in fast synaptic signaling in animal nervous systems and so far have not been found outside of the Metazoa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号