Fiddler crabs (Uca spp., Decapoda: Ocypodidae) are commonly found forming large aggregations in intertidal zones, where they perform rhythmic waving displays with their greatly enlarged claws. While performing these displays, fiddler crabs often synchronize their behavior with neighboring males, forming the only known synchronized visual courtship displays involving reflected light and moving body parts. Despite being one of the most conspicuous aspects of fiddler crab behavior, little is known about the mechanisms underlying synchronization of male displays. In this study we develop a spatially explicit model of fiddler crab waving displays using coupled logistic map equations. We explored two alternative models in which males either direct their attention at random angles or preferentially toward neighbors. Our results indicate that synchronization is possible over a fairly large region of parameter space. Moreover, our model was capable of generating local synchronization neighborhoods, as commonly observed in fiddler crabs under natural conditions. 相似文献
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity. 相似文献
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009–2010 El Niño event was equivalent to the anomaly observed during the 1997–1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions. 相似文献
The search for natural agents that minimize obesity-associated disorders is receiving special attention. In this regard, the present study aimed to evaluate the prophylactic effect of Chlorella vulgaris (CV) on body weight, lipid profile, blood glucose and insulin signaling in liver, skeletal muscle and adipose tissue of diet-induced obese mice.
Main methods
Balb/C mice were fed either with standard rodent chow diet or high-fat diet (HFD) and received concomitant treatment with CV for 12 consecutive weeks. Triglyceride, free fatty acid, total cholesterol and fractions of cholesterol were measured using commercial assay. Insulin and leptin levels were determined by enzyme-linked immunosorbent assay (ELISA). Insulin and glucose tolerance tests were performed. The expression and phosphorylation of IRβ, IRS-1 and Akt were determined by Western blot analyses.
Key findings
Herein we demonstrate for the first time in the literature that prevention by CV of high-fat diet-induced insulin resistance in obese mice, as shown by increased glucose and insulin tolerance, is in part due to the improvement in the insulin signaling pathway at its main target tissues, by increasing the phosphorylation levels of proteins such as IR, IRS-1 and Akt. In parallel, the lower phosphorylation levels of IRS-1ser307 were observed in obese mice. We also found that CV administration prevents high-fat diet-induced dyslipidemia by reducing triglyceride, cholesterol and free fatty acid levels.
Significance
We propose that the modulatory effect of CV treatment preventing the deleterious effects induced by high-fat diet is a good indicator for its use as a prophylactic–therapeutic agent against obesity-related complications. 相似文献
Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25–100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides. 相似文献
The present study aimed to evaluate the ovicidal activity (type 3 effect) of VC1 and VC4 isolates of Pochonia chlamydosporia in a solid medium and the action of a crude extract of P. chlamydosporia against eggs of Ascaridia galli. To evaluate ovicidal activity in culture medium, 1000 A. galli eggs were plated on Petri dishes containing 2% water-agar with grown fungal isolates (VC1 or VC4) and without fungus (control group) and were examined at 1, 3 and 5 days post-inoculation (assay A). Then, to test the action of crude extracts of P. chlamydosporia (VC1 or VC4), 500 eggs of A. galli were plated on Petri dishes of 4.5 cm diameter with 5 ml of fungal filtrate from each tested isolate. The control group consisted of 500 eggs of A. galli with 10 ml of distilled water on each Petri dish (assay B). Fungal isolates were effective (P < 0.01) at destroying these eggs, showing a type 3 effect at the studied intervals. On the other hand, the crude extract of isolates (VC1 or VC4) reduced the number of A. galli eggs in the treated group compared with the control group by 64.1% and 56.5%, respectively. The results of the present study show that P. chlamydosporia is effective at destroying eggs of A. galli and could therefore be used in the biological control of nematodes. 相似文献
The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system. 相似文献
Nestedness is a useful metric that characterizes the generalist–specialist balance in ecological communities. Although several nestedness indices have been proposed, few have explored how species abundance per se affects their performance and the ability to detect true interaction networks. We here develop a mathematical framework that takes into account abundance in estimates of nestedness. We use an analytical approach to relate abundance and nestedness. In our null model the probability of interaction among species is determined solely as function of their abundances. Assuming a power-law abundance model we analytically find the nestedness index and its coefficient of variability. We find that the sloping abundance distribution of our null model generates more nested structures. On the other hand steeper abundances lead to higher coefficients of variability. Both results suggest that nestedness analysis should be evaluated and explanations sought carefully. 相似文献
Mycobacterium abscessus is an important hospital-acquired pathogen involved in infections associated with medical, surgical, and biopharmaceutical materials. In this work, we investigated the pressure-induced inactivation of two strains [2544 and American Type Culture Collection (ATCC) 19977] of M. abscessus in combination with different temperatures and pH conditions. For strain 2544, exposure to 250 MPa for 90 min did not significantly inactivate the bacteria at 20 °C, whereas at ?15 °C, there was complete inactivation. Exposure to 250 MPa at ≥60 °C caused rapid inactivation, with no viable bacteria after 45 min. With 45 min of exposure, there were no viable bacteria at any temperature when a higher pressure (350 MPa) was used. Extremes of pH (4 or 9) also markedly enhanced the pressure-induced inactivation of bacteria at 250 MPa, with complete inactivation after 45 min. In comparison, exposure of this strain to the disinfecting agent glutaraldehyde (0.5 %) resulted in total inactivation within 5 min. Strain 19977 was more sensitive to high pressure but less sensitive to glutaraldehyde than strain 2544. These results indicate that high hydrostatic pressure in combination with other physical parameters may be useful in reducing the mycobacterial contamination of medical materials and pharmaceuticals that are sensitive to autoclaving. 相似文献
Flubendiamide is a highly toxic and persistent insecticide that causes loss of insect muscle functions leading to paralysis and death. The objective was to screen for filamentous fungi in soils where insecticides had been applied, to isolate entomopathogenic fungi from insect larva (Anticarsia gemmatalis) that infest soybean crops, and to use these in biodegradation of insecticides.
Method
Filamentous fungi were isolated from soils, and growth inhibition was evaluated on solid medium containing commercial insecticides, Belt® (flubendiamide) and Actara® (thiamethoxam). A total of 133 fungi were isolated from soil and 80 entomopathogenic fungi from insect larva. Based on growth inhibition tests, ten soil fungi, 2 entomopathogenic fungi, and Botryosphaeria rhodina MAMB-05 (reference standard) were selected for growth on commercial insecticides in solid media. Fungi were grown in submerged fermentation on media containing commercial insecticides and assayed for laccase activity.
Result
Isolates JUSOLCL039 (soil), JUANT070 (insect), and MAMB-05 performed best, and were respectively inhibited by 48.41%, 75.97%, and 79.23% when cultivated on 35 g/L Actara®, and 0.0, 5.42%, and 43.39% on 39.04 g/L Belt®. JUSOLCL039 and JUANT070 were molecularly identified as Trichoderma koningiopsis and Neurospora sp., respectively. The three fungal isolates produced laccase constitutively, albeit at low activities. Fungal growth on pure flubendiamide and thiamethoxam resulted in only thiamethoxam inducing high laccase titers (10.16 U/mL) by JUANT070. Neurospora sp. and B. rhodina degraded flubendiamide by 27.4% and 9.5% in vivo, while a crude laccase from B. rhodina degraded flubendiamide by 20.2% in vitro.
Conclusion
This is the first report of fungi capable of degrading flubendiamide, which have applications in bioremediation.