首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   28篇
  420篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   17篇
  2020年   11篇
  2019年   38篇
  2018年   15篇
  2017年   13篇
  2016年   22篇
  2015年   28篇
  2014年   39篇
  2013年   33篇
  2012年   45篇
  2011年   33篇
  2010年   15篇
  2009年   12篇
  2008年   20篇
  2007年   12篇
  2006年   11篇
  2005年   16篇
  2004年   8篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
排序方式: 共有420条查询结果,搜索用时 15 毫秒
41.

There is a strong interest in understanding how coral calcification varies with changing environmental conditions, especially given the projected changes in temperature and aragonite saturation due to climate change. This study explores in situ variation in calcification rates of Acropora downingi in the northeastern Persian Gulf relative to seasonal changes in temperature, irradiance and aragonite saturation state (Ω arag). Calcification rates of A. downingi were highest in the spring and lowest in the winter, and intra-annual variation in calcification rate was significantly related to temperature (r 2 = 0.30) and irradiance (r 2 = 0.36), but not Ω arag (r 2 = 0.02). Seasonal differences in temperature are obviously confounded by differences in other environmental conditions and vice versa. Therefore, we used published relationships from experimental studies to establish which environmental parameter(s) (temperature, irradiance, and/or Ω arag) placed greatest constraints on calcification rate (relative to the maximum spring rate) in each season. Variation in calcification rates was largely attributable to seasonal changes in irradiance and temperature (possibly ~57.4 and 39.7% respectively). Therefore, we predict that ocean warming may lead to increased rates of calcification during winter, but decelerate calcification during spring, fall and especially summer, resulting in net deceleration of calcification for A. downingi in the Persian Gulf.

  相似文献   
42.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   
43.
44.
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.  相似文献   
45.
The invasive freshwater mollusc Dreissena bugensis (quagga mussel) sticks to underwater surfaces via a proteinacious ‘anchor’ (byssus), consisting of a series of threads linked to adhesive plaques. This adhesion results in the biofouling of crucial underwater industry infrastructure, yet little is known about the proteins responsible for the adhesion. Here the identification of byssal proteins extracted from freshly secreted byssal material is described. Several new byssal proteins were observed by gel electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to characterize proteins in different regions of the byssus, particularly those localized to the adhesive interface. Byssal plaques and threads contain in common a range of low molecular weight proteins, while several proteins with higher mass were observed only in the plaque. At the adhesive interface, a plaque-specific ~8.1 kDa protein had a relative increase in signal intensity compared to the bulk of the plaque, suggesting it may play a direct role in adhesion.  相似文献   
46.
Guanidinium hydrochloride (GuHCl) at low concentrations significantly stabilizes the Fyn SH3 domain. In this work, we have demonstrated that this stabilizing effect is manifested through a dramatic (five- to sixfold) decrease in the unfolding rate of the domain with the folding rate being affected minimally. This behavior contrasts to the effect of NaCl, which stabilizes this domain by accelerating the folding rate. These data imply that the stabilizing effect of GuHCl is not predominantly ionic in nature. Through NMR studies, we have identified a specific binding site for guanidinium, and we have determined a dissociation constant of 90 mM for this interaction. The guanidinium-binding site overlaps with a functionally important arginine-binding pocket on the domain surface, and we have shown that GuHCl is a specific inhibitor of the peptide-binding activity of the domain. A different SH3 domain possessing a similar arginine-binding pocket is also thermodynamically stabilized by GuHCl. These data suggest that many proteins that normally interact with arginine-containing ligands may also be able to specifically interact with guanidinium. Thus, some caution should be used when using GuHCl as a denaturant in protein folding studies. Since arginine-mediated interactions are often important in the energetics of protein-protein interactions, our observations could be relevant for the design of small molecule inhibitors of protein-protein interactions.  相似文献   
47.
The majority of people infected with hepatitis C virus (HCV) fail to generate or maintain a T-cell response effective for viral clearance. Evidence from murine chronic viral infections shows that expression of the coinhibitory molecule PD-1 predicts CD8+ antiviral T-cell exhaustion and may contribute to inadequate pathogen control. To investigate whether human CD8+ T cells express PD-1 and demonstrate a dysfunctional phenotype during chronic HCV infection, peripheral and intrahepatic HCV-specific CD8+ T cells were examined. We found that in chronic HCV infection, peripheral HCV-specific T cells express high levels of PD-1 and that blockade of the PD-1/PD-L1 interaction led to an enhanced proliferative capacity. Importantly, intrahepatic HCV-specific T cells, in contrast to those in the periphery, express not only high levels of PD-1 but also decreased interleukin-7 receptor alpha (CD127), an exhausted phenotype that was HCV antigen specific and compartmentalized to the liver, the site of viral replication.  相似文献   
48.
49.
We aimed to study the relation between plasma levels of stress-induced heat shock protein 70 (HSPA1A) with plasminogen activator inhibitor-1 (PAI-1) and high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1 (Apo-A1), and HDL-C/Apo-A1 ratio. In a matched case-control study on patients with diabetes (40 patients with albuminuria and 40 without albuminuria matched for age, sex, and body mass index), we observed that plasma levels of HSPA1A and PAI-1 are increased in patients with albuminuria (0.55 ± 0.02 vs. 0.77 ± 0.04 ng/ml, p value <0.001 for HSPA1A; 25.9 ± 2 vs. 31.8 ± 2.4 ng/ml, p value <0.05 for PAI-1). There was a significant correlation between HSPA1A and PAI-1 in diabetic patients without albuminuria (r = 0.28; p value = 0.04), but not in those with albuminuria (r = 0.07; p value = 0.63). No association was found between HSPA1A and HDL-C, between HSPA1A and Apo-A1, or between HSPA1A and HDL-C/Apo-A1 ratio. We concluded that there is a direct correlation between plasma HSPA1A and PAI-1 levels in patients with diabetes, which is lost when they develop albuminuria.  相似文献   
50.

Background

Morphine-induced tolerance is associated with the spinal neuroinflammation. The aim of this study was to explore the effects of oral administration of the pioglitazone, the peroxisome proliferator activated receptor gamma (PPAR-γ) agonist, on the morphine-induced neuroinflammation in the lumbar region of the male Wistar rat spinal cord.

Results

Co-administration of the pioglitazone with morphine not only attenuated morphine-induced tolerance, but also prevented the up-regulation of pro-inflammatory cytokines (tumor necrosis factor alpha, interleukin-1beta, and interleukin 6) and nuclear factor-kappa B activity. Administration of the GW-9662 antagonized the above mentioned effects of the pioglitazone.

Conclusions

It is concluded that oral administration of the pioglitazone attenuates morphine-induced tolerance and the neuroinflammation in the lumbar region of the rat spinal cord. This action of the pioglitazone may be, at least in part, due to an interaction with the spinal pro-inflammatory cytokine expression and the nuclear factor-kappa B activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号