首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   8篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   7篇
  2014年   19篇
  2013年   15篇
  2012年   19篇
  2011年   19篇
  2010年   9篇
  2009年   8篇
  2008年   17篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1977年   4篇
排序方式: 共有204条查询结果,搜索用时 60 毫秒
131.
132.
133.
134.
Resistance to BRAF inhibitors (BRAFi) is one of the major challenges for targeted therapies for BRAF‐mutant melanomas. However, little is known about the role of microRNAs in conferring BRAFi resistance. Herein, we demonstrate that miR‐200c expression is significantly reduced whereas miR‐200c target genes including Bmi1, Zeb2, Tubb3, ABCG5, and MDR1 are significantly increased in melanomas that acquired BRAFi resistance compared to pretreatment tumor biopsies. Similar changes were observed in BRAFi‐resistant melanoma cell lines. Overexpression of miR‐200c or knock‐down of Bmi1 in resistant melanoma cells restores their sensitivities to BRAFi, leading to deactivation of the PI3K/AKT and MAPK signaling cascades, and acquisition of epithelial–mesenchymal transition‐like phenotypes, including upregulation of E‐cadherin, downregulation of N‐cadherin, and ABCG5 and MDR1 expression. Conversely, knock‐down of miR‐200c or overexpression of Bmi1 in BRAFi‐sensitive melanoma cells activates the PI3K/AKT and MAPK pathways, upregulates N‐cadherin, ABCG5, and MDR1 expression, and downregulates E‐cadherin expression, leading to BRAFi resistance. Together, our data identify miR‐200c as a critical signaling node in BRAFi‐resistant melanomas impacting the MAPK and PI3K/AKT pathways, suggesting miR‐200c as a potential therapeutic target for overcoming acquired BRAFi resistance.  相似文献   
135.
Although the actions of many of the hydrolytic enzymes involved in cellulose hydrolysis are relatively well understood, the contributions that amorphogenesis-inducing proteins might contribute to cellulose deconstruction are still relatively undefined. Earlier work has shown that disruptive proteins, such as the non-hydrolytic non-oxidative protein Swollenin, can open up and disaggregate the less-ordered regions of lignocellulosic substrates. Within the cellulosic fraction, relatively disordered, amorphous regions known as dislocations are known to occur along the length of the fibers. It was postulated that Swollenin might act synergistically with hydrolytic enzymes to initiate biomass deconstruction within these dislocation regions. Carbohydrate binding modules (CBMs) that preferentially bind to cellulosic substructures were fluorescently labeled. They were imaged, using confocal microscopy, to assess the distribution of crystalline and amorphous cellulose at the fiber surface, as well as to track changes in surface morphology over the course of enzymatic hydrolysis and fiber fragmentation. Swollenin was shown to promote targeted disruption of the cellulosic structure at fiber dislocations.  相似文献   
136.
Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils.Eosinophils express numerous receptors and secrete a wide variety of inflammatory mediators that influence many innate and adaptive immune responses. These multifunctional cells are important in the defense against helminth infection and are involved in the pathogenesis of many eosinophilic dominant allergic diseases.1 High levels of eosinophil granule proteins (such as major basic protein (MBP)) have been found in bronchoalveolar lavage fluid from patients with asthma and evidence indicates that high-concentration granule products have contributed to the development of airway hyperreactivity (AHR), a cardinal feature of asthma.2 Asthma is an inflammatory disease of the airways with participation of many cell types including leukocytes especially eosinophils and lymphocytes.3, 4 Activation of these cells (mainly lymphocytes) leads to the release of proinflammatory mediators and cytokines such as leukotriene B4, interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-9 (IL-9), interleukin-13 (IL-13) and colony-stimulating factor granulocyte-macrophage (GM-CSF).3, 5, 6, 7 Investigations using preclinical animal models of asthma and clinical studies in patients with asthma have demonstrated that the presence of eosinophils in the lungs are associated with epithelial damage, goblet cell hyperplasia, smooth muscle hypertrophy and airway hyperresponsiveness resulting in airflow limitation which can be fatal.3, 8, 9, 10 Recently, anti-IL-5 treatment has been shown to ameliorate lung function in patients with eosinophilic asthma.11Apoptosis of leukocytes is regarded as an important process for the successful resolution of inflammatory responses. Reduced eosinophil apoptosis in bronchoalveolar lavage (BAL) fluid has been shown to correlate positively with severity of asthma.3, 12, 13, 14 Indeed, defective leukocyte apoptosis and subsequent removal of apoptotic cells by phagocytes is thought to be important for the initiation and propagation of chronic inflammatory diseases such as asthma.15 Therefore, a balance in the tissue microenvironment between pro- and antiapoptotic signals is likely to greatly influence the load of eosinophils in the asthmatic lung.16 Thus, there is a great interest in understanding the mechanisms responsible for the elimination of eosinophils and other leukocytes and inactivation of proinflammatory mediators in inflammatory sites.17Several molecular pathways have been shown to modulate the survival and death of leukocytes at sites of inflammation, including reactive oxygen species (ROS).18 ROS are a family of molecules containing oxygen and includes hydrogen peroxide (H2O2), superoxide O2, hydroxyl radical (OH) and nitric oxide (NO).19 In inflammatory conditions, ROS are increased as they help in neutralizing invading organisms during infection either directly or indirectly by formation of extracellular traps (ETs).20 ROS have traditionally been regarded as quintessentially proinflammatory. However, evidence for ROS-mediated anti-inflammatory actions has been described.21 The importance for ROS production in the context of infection can be exemplified in patients with chronic granulomatous disease (CGD) where defective production in ROS results in multiple infections and often early death.22, 23 Furthermore, studies in mouse models have shown that NADPH oxidase is key for regulating lung inflammation and injury as well as NF-κB activation and downstream cytokine production in response to LPS.24 More recently, our group has demonstrated that NADPH oxidase-derived H2O2 is directly linked to induction of apoptosis of neutrophils and resolution of inflammation in a model of antigen-induced arthritis.18 However, the role of ROS in the context of the resolution of allergic inflammation is still unknown.Here, we evaluated whether H2O2 drives apoptosis of eosinophils and thereby influences the resolution of established eosinophilic inflammation and reduction of airflow obstruction. Our study provides evidence that H2O2 is released during allergic inflammation in a gp91phox−/−-dependent manner and induces a caspase-dependent proapoptotic effect in eosinophils, thus having a crucial role in the resolution of allergic inflammation.  相似文献   
137.
The production of biosurfactant by Bacillus subtilis LSFM-05 was carried out using raw glycerol, obtained from a vegetable oil biodiesel plant in Brazil, as the sole carbon source. Production of the biosurfactant was carried out in a 15-L bench-top fermentor and the surfactant was obtained from the foam produced. The crude surfactant was purified by silica gel column chromatography with a yield of 230 mg of the purified biosurfactant per liter of foam. TLC, IR spectroscopy, 1H and 13C NMR and Fourier transform ion cyclotron resonance mass spectrometry with electrospray ionization (ESI-FTMS) were used to characterize the purified surfactant. The isolated surfactant was identified as a surfactin lipopeptide. MS/MS data identified the amino acid sequence as GluOMe-Leu-Leu-Asp-Val-Leu-Leu and showed that the fatty acid moiety contained 14 carbons in iso, anteiso or normal configurations. The critical micelle concentration of the C14/Leu7 surfactin was 70 μM, with emulsification efficiency after 24 h (E24) of 67.6% against crude oil. Raw glycerol represents an abundant and renewable carbon source and provides an opportunity for reducing the cost of biosurfactant production and may add value to biodiesel production by creating new commercial applications for this by-product.  相似文献   
138.
139.
Scorpion toxins targeting voltage-gated sodium (Na(V)) channels are peptides that comprise 60-76 amino acid residues cross-linked by four disulfide bridges. These toxins can be divided in two groups (α and β toxins), according to their binding properties and mode of action. The scorpion α-toxin Ts2, previously described as a β-toxin, was purified from the venom of Tityus serrulatus, the most dangerous Brazilian scorpion. In this study, seven mammalian Na(V) channel isoforms (rNa(V)1.2, rNa(V)1.3, rNa(V)1.4, hNa(V)1.5, mNa(V)1.6, rNa(V)1.7 and rNa(V)1.8) and one insect Na(V) channel isoform (DmNa(V)1) were used to investigate the subtype specificity and selectivity of Ts2. The electrophysiology assays showed that Ts2 inhibits rapid inactivation of Na(V)1.2, Na(V)1.3, Na(V)1.5, Na(V)1.6 and Na(V)1.7, but does not affect Na(V)1.4, Na(V)1.8 or DmNa(V)1. Interestingly, Ts2 significantly shifts the voltage dependence of activation of Na(V)1.3 channels. The 3D structure of this toxin was modeled based on the high sequence identity (72%) shared with Ts1, another T. serrulatus toxin. The overall fold of the Ts2 model consists of three β-strands and one α-helix, and is arranged in a triangular shape forming a cysteine-stabilized α-helix/β-sheet (CSαβ) motif.  相似文献   
140.
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe3+-mono-oxalate (Fe(C2O4)+). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe3+ molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5, it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe–oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2–4.5, iron from Fe–oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe3+ molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6–5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号