首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   253篇
  免费   23篇
  2023年   1篇
  2022年   5篇
  2021年   11篇
  2020年   7篇
  2019年   4篇
  2018年   7篇
  2017年   10篇
  2016年   11篇
  2015年   15篇
  2014年   24篇
  2013年   13篇
  2012年   29篇
  2011年   40篇
  2010年   11篇
  2009年   11篇
  2008年   10篇
  2007年   5篇
  2006年   5篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1969年   1篇
  1968年   4篇
  1957年   1篇
排序方式: 共有276条查询结果,搜索用时 171 毫秒
81.
Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the predator. Thrips and predatory mites - apartfrom feeding on each other - can also feed and reproduce on a diet of pollen.Because thrips may aggregate at pollen patches, such patches may be risky foroviposition by the predatory mites. We found that, in absence of thrips,predatory mites lay their eggs close to pollen, but further away when thripsarepresent. Predatory mite eggs near pollen were killed more frequently by thripsthan when they were deposited further away. The oviposition behaviour of thepredatory mite was also studied in absence of thrips, but in presence of thealarm pheromone of thrips. This pheromone is normally secreted upon contactwithpredators or competitors. When applied close to the pollen, predatory mitesoviposited significantly further away from it. When the alarm pheromone wasapplied away from the food source, most eggs were found near the pollen. Theseresults indicate that female predatory mites show flexible ovipositionbehaviourin response to the presence of their counterattacking prey.  相似文献   
82.
The gut microbiota of termites plays critical roles in the symbiotic digestion of lignocellulose. While phylogenetically ‘lower termites’ are characterized by a unique association with cellulolytic flagellates, higher termites (family Termitidae) harbour exclusively prokaryotic communities in their dilated hindguts. Unlike the more primitive termite families, which primarily feed on wood, they have adapted to a variety of lignocellulosic food sources in different stages of humification, ranging from sound wood to soil organic matter. In this study, we comparatively analysed representatives of different taxonomic lineages and feeding groups of higher termites to identify the major drivers of bacterial community structure in the termite gut, using amplicon libraries of 16S rRNA genes from 18 species of higher termites. In all analyses, the wood‐feeding species were clearly separated from humus and soil feeders, irrespective of their taxonomic affiliation, offering compelling evidence that diet is the primary determinant of bacterial community structure. Within each diet group, however, gut communities of termites from the same subfamily were more similar than those of distantly related species. A highly resolved classification using a curated reference database revealed only few genus‐level taxa whose distribution patterns indicated specificity for certain host lineages, limiting any possible cospeciation between the gut microbiota and host to short evolutionary timescales. Rather, the observed patterns in the host‐specific distribution of the bacterial lineages in termite guts are best explained by diet‐related differences in the availability of microhabitats and functional niches.  相似文献   
83.

Conservation programmes are always limited by available resources. Careful planning is therefore required to increase the efficiency of conservation and gap analysis can be used for this purpose. This method was used to assess the representativeness of current ex situ and in situ conservation actions of 234 priority crop wild relatives (CWR) in Indonesia. This analysis also included species distribution modelling, the creation of an ecogeographical land characterization map, and a complementarity analysis to identify priorities area for in situ conservation and for further collecting of ex situ conservation programmes. The results show that both current ex situ and in situ conservation actions are insufficient. Sixty-six percent of priority CWRs have no recorded ex situ collections. Eighty CWRs with ex situ collections are still under-represented in the national genebanks and 65 CWRs have no presence records within the existing protected area network although 60 are predicted to exist in several protected areas according to their potential distribution models. The complementarity analysis shows that a minimum of 61 complementary grid areas (complementary based on grid cells) are required to conserve all priority taxa and 40 complementary protected areas (complementary based on existing protected areas) are required to conserve those with known populations within the existing in situ protected area network. The top ten of complementary protected areas are proposed as the initial areas for the development of CWR genetic reserves network in Indonesia. It is recommended to enhanced coordination between ex situ and in situ conservation stakeholders for sustaining the long term conservation of CWR in Indonesia. Implementation of the research recommendations will provide for the first time an effective conservation planning of Indonesia’s CWR diversity and will significantly enhance the country’s food and nutritional security.

  相似文献   
84.
International Journal of Peptide Research and Therapeutics - Recombinant reteplase is the truncated form of tissue plasminogen activator. Signal peptides play a pivotal role in the secretion of...  相似文献   
85.
86.
Parkinson's disease (PD) is a common neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra and the aggregation of α-synuclein into Lewy bodies. Existing therapies address motor dysfunction but do not halt progression of the disease. A still unresolved question is the biochemical pathway that modulates the outcome of protein misfolding and aggregation processes in PD. The molecular chaperone network plays an important defensive role against cellular protein misfolding and has been identified as protective in experimental models of protein misfolding diseases like PD. Molecular mechanisms underlying chaperone-neuroprotection are actively under investigation. Current evidence implicates a number of molecular chaperones in PD including Hsp25, Hsp70 and Hsp90, however their precise involvement in the neurodegenerative cascade is unresolved. The J protein family (DnaJ or Hsp40 protein family) has long been known to be important in protein conformational processes.We assessed sensory and motor function of control and PD rats and then evaluated the brain region-specific expression levels of select J proteins by Western analysis. Surprisingly, we observed a widespread 26 kDa breakdown product of the J protein, TID1, (tumorous imaginal discs, mtHsp40 or DnaJ3) in a 6-hydroxydopamine (6-OHDA) rat model of PD in which food handling, gait symmetry and sensory performance were impaired. Greater behavioral deficits were associated with lower TID1 expression. Furthermore, direct application of either 6-OHDA or MPP+ (1-methyl-4-phenylpyridinum) to CAD (CNS-derived catecholinaminergic neuronal cell line) cell cultures, reduced TID1 expression levels.Our results suggest that changes in cellular TID1 are a factor in the pathogenesis of PD by impeding functional and structural compensation and exaggerating neurodegenerative processes. In contrast, no changes were observed in CSPα, Hsp40, Hsp70, Hsc70 and PrP(C) levels and no activation of caspase3 was observed. This study links TID1 to PD and provides a new target for therapeutics that halts the PD progression.  相似文献   
87.
88.
89.
Bacteria in the soil compete for limited resources. One of the ways they might do this is by producing antibiotics, but the metabolic costs of antibiotics and their low concentrations have caused uncertainty about the ecological role of these products for the bacteria that produce them. Here, we examine the benefits of streptomycin production by the filamentous bacterium Streptomyces griseus. We first provide evidence that streptomycin production enables S. griseus to kill and invade the susceptible species, S. coelicolor, but not a streptomycin-resistant mutant of this species. Next, we show that the benefits of streptomycin production are density dependent, because production scales positively with cell number, and frequency dependent, with a threshold of invasion of S. griseus at around 1%. Finally, using serial transfer experiments where spatial structure is either maintained or destroyed, we show that spatial structure reduces the threshold frequency of invasion by more than 100-fold, indicating that antibiotic production can permit invasion from extreme rarity. Our results show that streptomycin is both an offensive and defensive weapon that facilitates invasion into occupied habitats and also protects against invasion by competitors. They also indicate that the benefits of antibiotic production rely on ecological interactions occurring at small local scales.  相似文献   
90.
Myocilin is a protein with a molecular weight near 50 kDa. It is expressed in almost all organs and tissues.1 We showed that the peptide DQL ETQ TRE LET AYS NLL RD corresponding to N-terminal Leucine zipper motif (LZM) of the protein is able to form amyloid-like fibrils. The possible role of this motif in myocilin aggregation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号