首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2730篇
  免费   188篇
  2022年   18篇
  2021年   20篇
  2020年   18篇
  2019年   24篇
  2018年   41篇
  2017年   28篇
  2016年   44篇
  2015年   77篇
  2014年   77篇
  2013年   176篇
  2012年   140篇
  2011年   115篇
  2010年   89篇
  2009年   75篇
  2008年   133篇
  2007年   160篇
  2006年   144篇
  2005年   137篇
  2004年   139篇
  2003年   119篇
  2002年   122篇
  2001年   94篇
  2000年   75篇
  1999年   68篇
  1998年   34篇
  1997年   35篇
  1996年   17篇
  1995年   27篇
  1994年   29篇
  1993年   23篇
  1992年   49篇
  1991年   56篇
  1990年   58篇
  1989年   72篇
  1988年   48篇
  1987年   47篇
  1986年   30篇
  1985年   26篇
  1984年   13篇
  1983年   13篇
  1982年   16篇
  1981年   19篇
  1980年   15篇
  1979年   15篇
  1978年   11篇
  1977年   11篇
  1976年   10篇
  1975年   13篇
  1974年   23篇
  1972年   11篇
排序方式: 共有2918条查询结果,搜索用时 390 毫秒
931.
Oxygen (O(2)) is a prerequisite for cellular respiration in aerobic organisms but also elicits toxicity. To understand how animals cope with the ambivalent physiological nature of O(2), it is critical to elucidate the molecular mechanisms responsible for O(2) sensing. Here our systematic evaluation of transient receptor potential (TRP) cation channels using reactive disulfides with different redox potentials reveals the capability of TRPA1 to sense O(2). O(2) sensing is based upon disparate processes: whereas prolyl hydroxylases (PHDs) exert O(2)-dependent inhibition on TRPA1 activity in normoxia, direct O(2) action overrides the inhibition via the prominent sensitivity of TRPA1 to cysteine-mediated oxidation in hyperoxia. Unexpectedly, TRPA1 is activated through relief from the same PHD-mediated inhibition in hypoxia. In mice, disruption of the Trpa1 gene abolishes hyperoxia- and hypoxia-induced cationic currents in vagal and sensory neurons and thereby impedes enhancement of in vivo vagal discharges induced by hyperoxia and hypoxia. The results suggest a new O(2)-sensing mechanism mediated by TRPA1.  相似文献   
932.
Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ(null) strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases.  相似文献   
933.
Prostanoids are bioactive substances that contribute to various biological and pathological processes. To evaluate both extracellular and intracellular levels of prostanoids at the same time, we developed methods for quantification of extracellular and intracellular levels of prostanoids, including prostaglandin E(2) (PGE(2)), PGD(2), PGF(2α), 6-keto PGF(1α), and TXB(2), in cultured cells using liquid chromatography/tandem mass spectrometry (LC/MS/MS), and we validated the LC/MS/MS methods. A solid-phase extraction cartridge was used for extraction of prostanoids. The prostanoids were separated by a C(18) column with an isocratic flow of acetonitrile/water/acetic acid (40:60:0.1, v/v/v). Calibration curves of extracellular measurement for the prostanoids were linear in the range from 0.1 to 100 ng/mL (r(2)>0.999), and those of intracellular measurement were linear in the range from 0.05 to 50 ng (r(2)>0.999). Validation assessment showed that both methods of extracellular and intracellular measurements were highly reliable with good accuracy and precision. We also applied the methods to human airway epithelial Calu-3 cells and human lung adenocarcinoma epithelial A549 cells.  相似文献   
934.
935.
Ohta H  Arai S  Akita K  Ohta T  Fukuda S 《PloS one》2011,6(2):e17137

Background

Neurotrophic factors may be future therapeutic agents for neurodegenerative disease. In the screening of biologically active molecules for neurotrophic potency, we found that a photosensitizing cyanine dye, NK-4, had remarkable neurotrophic activities and was a potent radical scavenger.

Methodology/Principal Findings

In this study, we evaluated the effect of NK-4 on the protection of neurons against oxidative damage and investigated the associated intracellular signaling pathways. Subsequently, we evaluated the effect of NK-4 in an animal model of neurodegeneration. In vitro, NK-4 showed dose-dependent protection of PC12 cells from toxicity induced by oxidative stress caused by hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA). Comparison of extracellular signal-regulated kinase signaling pathways between treatment with NK-4 and nerve growth factor (NGF) using K252a, an inhibitor of the NGF receptor TrkA, revealed that NK-4 activity occurs independently of NGF receptors. LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, blocked the protective effect of NK-4, and NK-4 caused activation of Akt/protein kinase B, a downstream effector of PI3K. These results suggest that the neuroprotective effects of NK-4 are mediated by the PI3K-Akt signaling pathway. NK-4 treatment also attenuated stress-induced activation of SAPK/JNK, which suggests that NK-4 activates a survival signaling pathway and inhibits stress-activated apoptotic pathways independently of the TrkA receptor in neuronal cells. In vivo, administration of NK-4 improved motor coordination in genetic ataxic hamsters, as assessed by rota-rod testing. Histological analysis showed that cerebellar atrophy was significantly attenuated by NK-4 treatment. Notably, the Purkinje cell count in the treated group was threefold higher than that in the vehicle group.

Conclusions/Significance

These results suggest that NK-4 is a potential agent for therapy for neurodegenerative disorders based on the activation of survival signaling pathways.  相似文献   
936.
This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O2, fraction (FIO2) = 0.21) hypoxia (FIO2 = 0.125), and hyperoxia (FIO2 = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow 1,2 and a multi-echo fast gradient echo (mGRE) sequence 3 was used to quantify the regional proton (i.e. H2O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O2 and CO2 concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO2) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion4, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL). Rationale: Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.Download video file.(74M, mov)  相似文献   
937.
The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.  相似文献   
938.
939.
940.
Myeloid-derived suppressor cells (MDSCs) are known as key immune regulators in various human malignancies, and it is reported that CD14+HLA-DR?/low MDSCs are increased in hepatocellular carcinoma (HCC) patients. However, the host factors that regulate the frequency and the effect on the prognosis of HCC patients are still unclear. We investigated these issues and clarified the relationships between a feature of MDSCs and host factors in HCC patients. We examined the frequency of MDSCs in 123 HCC patients, 30 chronic liver disease patients without HCC, and 13 healthy controls by flow cytometric analysis. The relationships between the clinical features and the frequency of MDSCs were analyzed. In 33 patients who received curative radiofrequency ablation (RFA) therapy, we examined the impact of MDSCs on HCC recurrence. The frequency of MDSCs in HCC patients was significantly increased. It was correlated with tumor progression, but not with the degree of liver fibrosis and inflammation. In terms of serum cytokines, the concentrations of IL-10, IL-13, and vascular endothelial growth factor were significantly correlated with the frequency of MDSCs. In HCC patients who received curative RFA therapy, the frequency of MDSCs after treatment showed various changes and was inversely correlated with recurrence-free survival time. The frequency of MDSCs is correlated with tumor progression, and this frequency after RFA is inversely correlated with the prognosis of HCC patients. Patients with a high frequency of MDSCs after RFA should be closely followed and the inhibition of MDSCs may improve the prognosis of patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号