首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   142篇
  国内免费   4篇
  2023年   12篇
  2022年   31篇
  2021年   67篇
  2020年   34篇
  2019年   49篇
  2018年   53篇
  2017年   50篇
  2016年   52篇
  2015年   105篇
  2014年   105篇
  2013年   123篇
  2012年   172篇
  2011年   173篇
  2010年   88篇
  2009年   68篇
  2008年   95篇
  2007年   75篇
  2006年   71篇
  2005年   67篇
  2004年   52篇
  2003年   61篇
  2002年   56篇
  2001年   40篇
  2000年   36篇
  1999年   33篇
  1998年   18篇
  1997年   22篇
  1996年   18篇
  1995年   17篇
  1994年   12篇
  1993年   13篇
  1992年   37篇
  1991年   23篇
  1990年   14篇
  1989年   21篇
  1988年   24篇
  1987年   36篇
  1986年   25篇
  1985年   14篇
  1984年   22篇
  1983年   26篇
  1982年   9篇
  1981年   15篇
  1980年   10篇
  1979年   15篇
  1978年   9篇
  1976年   7篇
  1973年   8篇
  1972年   12篇
  1970年   5篇
排序方式: 共有2228条查询结果,搜索用时 93 毫秒
131.
We previously developed peptides that bind to G protein betagamma subunits and selectively block interactions between betagamma subunits and a subset of effectors in vitro (Scott, J. K., Huang, S. F., Gangadhar, B. P., Samoriski, G. M., Clapp, P., Gross, R. A., Taussig, R., and Smrcka, A. V. (2001) EMBO J. 20, 767-776). Here, we created cell-permeating versions of some of these peptides by N-terminal modification with either myristate or the cell permeation sequence from human immunodeficiency virus TAT protein. The myristoylated betagamma-binding peptide (mSIRK) applied to primary rat arterial smooth muscle cells caused rapid activation of extracellular signal-regulated kinase 1/2 in the absence of an agonist. This activation did not occur if the peptide lacked a myristate at the N terminus, if the peptide had a single point mutation to eliminate betagamma subunit binding, or if the cells stably expressed the C terminus of betaARK1. A human immunodeficiency virus TAT-modified peptide (TAT-SIRK) and a myristoylated version of a second peptide (mSCAR) that binds to the same site on betagamma subunits as mSIRK, also caused extracellular signal-regulated kinase activation. mSIRK also stimulated Jun N-terminal kinase phosphorylation, p38 mitogen-activated protein kinase phosphorylation, and phospholipase C activity and caused Ca2+ release from internal stores. When tested with purified G protein subunits in vitro, SIRK promoted alpha subunit dissociation from betagamma subunits without stimulating nucleotide exchange. These data suggest a novel mechanism by which selective betagamma-binding peptides can release G protein betagamma subunits from heterotrimers to stimulate G protein pathways in cells.  相似文献   
132.
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.  相似文献   
133.
134.
This experiment tested the hypothesis that using near-infrared (IR) imaging spectrometry on tablets through blister packs permits the identification and composition of multiple individual tablets to be determined simultaneously. Aspirin was selected for this study because its breakdown mechanism is well understood. Near-IR cameras were used to collect thousands of spectra simultaneously from a field of packaged aspirin tablets. Tablets were selected by a principal component analysis selection alogorithm. Graphs of the columns of the transformation matrix showed that salicylic acid and acetylsalicylic acid in the samples were modeled by the principal components. The bootstrap error-adjusted single-sample technique chemometric-imaging algorithm was used to draw probability-density contour plots that revealed tablet composition. Choice of color was used to represent constituent identity, whereas intensity represented concentration. The percentage of usable pixels in the indium antimonide (InSb) array was 99.9%. The SEP was 0.06% of the tablet mass for both water uptake and salicylic acid production. The number of tablets that a typical near-IR camera can currently analyze simultaneously was also estimated to be approximately 1300.  相似文献   
135.
Now that it is likely that all yeast nucleoporins are known, one of the ultimate goals is the in vitro assembly of the entire nuclear pore complex from its approximately 30 individual components. Here, we report the reconstitution of seven proteins (Nup133p, Nup145p-C, Nup120p, Nup85p, Nup84p, Seh1p and Sec13p) into a heptameric 0.5 MDa nuclear pore subcomplex. We found that double plasmid transformation combined with bi-cistronic mRNA translation allow the expression and assembly of distinct subcomplexes of up to five nucleoporins in a single Escherichia coli cell. During the sequential reconstitution of the Nup84p complex, smaller assembly intermediates can be isolated, which exhibit modular structures determined by electron microscopy that finally make up the whole Y-shaped Nup84p complex. Importantly, a seventh subunit, Nup133p, was incorporated into the complex through its interaction with Nup84p, thereby elongating one arm of the Y-shaped assembly to an approximately 40 nm long stalk. Taken together, our data document that the Nup84p-Nup133p complex self-assembles in a modular concept from distinct smaller nucleoporin construction sets.  相似文献   
136.
Mixture interactions between sour and salt taste modalities were investigated in rats by direct measurement of intracellular pH (pH(i)) and Na(+) activity ([Na(+)](i)) in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) nerve recordings. Stimulating the lingual surface with NaCl solutions adjusted to pHs ranging between 2.0 and 10.3 increased the magnitude of NaCl CT responses linearly with increasing external pH (pH(o)). At pH 7.0, the epithelial sodium channel (ENaC) blocker, benzamil, decreased NaCl CT responses and inhibited further changes in CT responses induced by varying pH(o) to 2.0 or 10.3. At constant pH(o), buffering NaCl solutions with potassium acetate/acetic acid (KA/AA) or HCO(3)(-)/CO(2) inhibited NaCl CT responses relative to CT responses obtained with NaCl solutions buffered with HEPES. The carbonic anhydrase blockers, MK-507 and MK-417, attenuated the inhibition of NaCl CT responses in HCO(3)(-)/CO(2) buffer, suggesting a regulatory role for pH(i). In polarized TRCs step changes in apical pH(o) from 10.3 to 2.0 induced a linear decrease in pH(i) that remained within the physiological range (slope = 0.035; r(2) = 0.98). At constant pH(o), perfusing the apical membrane with Ringer's solutions buffered with KA/AA or HCO(3)(-)/CO(2) decreased resting TRC pH(i), and MK-507 or MK-417 attenuated the decrease in pH(i) in TRCs perfused with HCO(3)(-)/CO(2) buffer. In parallel experiments, TRC [Na(+)](i) decreased with (a) a decrease in apical pH, (b) exposing the apical membrane to amiloride or benzamil, (c) removal of apical Na(+), and (d) acid loading the cells with NH(4)Cl or sodium acetate at constant pH(o). Diethylpyrocarbonate and Zn(2+), modification reagents for histidine residues in proteins, attenuated the CO(2)-induced inhibition of NaCl CT responses and the pH(i)-induced inhibition of apical Na(+) influx in TRCs. We conclude that TRC pH(i) regulates Na(+)-influx through amiloride-sensitive apical ENaCs and hence modulates NaCl CT responses in acid/salt mixtures.  相似文献   
137.
Endothelial barrier function is regulated in part by the transcellular transport of albumin and other macromolecules via endothelial caveolae (i.e., this process is defined as transcytosis). Using pulmonary microvascular endothelial cells, we have identified the specific interactions between a cell surface albumin-docking protein gp60 and caveolin-1 as well as components of the signaling machinery, heterotrimeric G protein (G(i))- and Src-family tyrosine kinase. Ligation of gp60 on the apical membrane induces the release of caveolae from the apical membrane and activation of endocytosis. The formed vesicles contain the gp60-bound albumin and also albumin and other solutes present in the fluid phase. Vesicles are transported in a polarized manner to the basolateral membrane, releasing their contents by exocytosis into the subendothelial space. The signaling functions of G(i) and Src are important in the release of caveolae from the plasma membrane. The Src-induced phosphorylation of caveolin-1 is crucial in regulating interactions of caveolin-1 with other components of the signaling machinery such as G(i), and key signaling entry of caveolae into the cytoplasm and endocytosis of albumin and other solutes. This review addresses the basis of transcytosis in endothelial cells, its central role as a determinant of endothelial barrier function, and signaling mechanisms involved in regulating fission of caveolae and trafficking of the formed vesicles from the luminal to abluminal side of the endothelial barrier.  相似文献   
138.
The mechanism of arachidonic acid (AA)-induced apoptosis in vascular smooth muscle cells (VSMCs) was studied in the A-10 rat aortic smooth muscle cell line. Treatment of serum-deprived VSMCs with 50 microM AA for 24 h resulted in a loss of cell viability. The apoptotic effect of AA was characterized by annexin V binding, sub-G1 population of cells, cell shrinkage and chromatin condensation. AA-induced VSMC death was attenuated by antioxidants alpha-tocopherol and glutathione, the hydrogen peroxide (H2O2) scavenger catalase and by serum proteins, albumin and gamma globulins. Moreover, the AA peroxidation products, 12(S)-hydroperoxyeicosatetraenoic acid (HPETE), 15(S)-HPETE, 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) caused VSMC apoptosis. These data suggest an oxidative mechanism of AA-induced VSMC death. The apoptotic effect of AA was pH-dependent, being inhibited by extracellular alkalinization to pH 8.0. AA inhibited serum-stimulated cell cycle progression in quiescent cells, but not in proliferating cells. In conclusion, AA, through its oxidation products causes VSMC apoptosis. Antioxidants, by inhibiting VSMC apoptosis, may prevent consequent pathological events such as atherosclerotic plaque rupture.  相似文献   
139.
140.
Escherichia coli K1 traversal of the human brain microvascular endothelial cells (HBMEC) that constitute the blood-brain barrier (BBB) is a complex process involving E. coli adherence to and invasion of HBMEC. In this study, we demonstrated that human transforming growth factor-beta-1 (TGF-beta1) increases E. coli K1 adherence, invasion, and transcytosis in HBMEC. In addition, TGF-beta1 increases RhoA activation and enhances actin condensation in HBMEC. We have previously shown that E. coli K1 invasion of HBMEC requires phosphatidylinositol-3 kinase (PI3K) and RhoA activation. TGF-beta1 increases E. coli K1 invasion in PI3K dominant-negative HBMEC, but not in RhoA dominant-negative HBMEC, indicating that TGF-beta1-mediated increase in E. coli K1 invasion is RhoA-dependent, but not PI3K-dependent. Our findings suggest that TGF-beta1 treatment of HBMEC increases E. coli K1 adherence, invasion, and transcytosis, which are probably dependent on RhoA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号