首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   70篇
  766篇
  2024年   1篇
  2023年   6篇
  2022年   3篇
  2021年   16篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   17篇
  2016年   32篇
  2015年   33篇
  2014年   48篇
  2013年   41篇
  2012年   66篇
  2011年   58篇
  2010年   51篇
  2009年   34篇
  2008年   61篇
  2007年   47篇
  2006年   36篇
  2005年   41篇
  2004年   32篇
  2003年   37篇
  2002年   18篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1967年   2篇
排序方式: 共有766条查询结果,搜索用时 15 毫秒
71.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.  相似文献   
72.
We examined genotype (G) by environment (E) interactions for fitness in mesic and xeric ecotypes of the self-fertilizing annual grass, Avena barbata and their recombinant inbred hybrid progeny. Fitness was assayed (1) in experimental water and nutrient treatments in the greenhouse and (2) in common gardens in each ecotype's native habitat. G x E interactions were significant in the greenhouse. Nevertheless, the same recombinant genotypes tended to have high fitness across all water and nutrient treatments. G x E interactions were less pronounced in the field, and were driven by the contrast between the uniformly low survivorship at the mesic site in 2004 and genetic variation in fitness at the other years/site combinations. Moreover, the mesic ecotype consistently outperformed the xeric in both field and greenhouse. Several of the recombinant genotypes outperformed the parents in the novel greenhouse treatments, but these genotypes did not outperform the mesic parent in field trials. Indeed, it is only in the comparison between field and greenhouse environments that there was a noticeable change in the identity of the most-fit genotype. The results provide evidence that hybridization can create genotypes that are better adapted to newer environments such as those imposed in our greenhouse experiments.  相似文献   
73.
74.
Mu Y  Otsuka T  Horton AC  Scott DB  Ehlers MD 《Neuron》2003,40(3):581-594
Activity-dependent targeting of NMDA receptors (NMDARs) is a key feature of synapse formation and plasticity. Although mechanisms for rapid trafficking of glutamate receptors have been identified, the molecular events underlying chronic accumulation or loss of synaptic NMDARs have remained unclear. Here we demonstrate that activity controls NMDAR synaptic accumulation by regulating forward trafficking at the endoplasmic reticulum (ER). ER export is accelerated by the alternatively spliced C2' domain of the NR1 subunit and slowed by the C2 splice cassette. This mRNA splicing event at the C2/C2' site is activity dependent, with C2' variants predominating upon activity blockade and C2 variants abundant with increased activity. The switch to C2' accelerates NMDAR forward trafficking by enhancing recruitment of nascent NMDARs to ER exit sites via binding of a divaline motif within C2' to COPII coats. These results define a novel pathway underlying activity-dependent targeting of glutamate receptors, providing an unexpected mechanistic link between activity, mRNA splicing, and membrane trafficking during excitatory synapse modification.  相似文献   
75.
To elucidate the geomicrobiological factors controlling nitrification in salt marsh sediments, a comprehensive approach involving sediment geochemistry, process rate measurements, and quantification of the genetic potential for nitrification was applied to three contrasting salt marsh habitats: areas colonized by the tall (TS) or short (SS) form of Spartina alterniflora and unvegetated creek banks (CBs). Nitrification and denitrification potential rates were strongly correlated with one another and with macrofaunal burrow abundance, indicating that coupled nitrification-denitrification was enhanced by macrofaunal burrowing activity. Ammonia monooxygenase (amoA) gene copy numbers were used to estimate the ammonia-oxidizing bacterial population size (5.6 × 104 to 1.3 × 106 g of wet sediment−1), which correlated with nitrification potentials and was 1 order of magnitude higher for TS and CB than for SS. TS and CB sediments also had higher Fe(III) content, higher Fe(III)-to-total reduced sulfur ratios, higher Fe(III) reduction rates, and lower dissolved sulfides than SS sediments. Iron(III) content and reduction rates were positively correlated with nitrification and denitrification potential and amoA gene copy number. Laboratory slurry incubations supported field data, confirming that increased amounts of Fe(III) relieved sulfide inhibition of nitrification. We propose that macrofaunal burrowing and high concentrations of Fe(III) stimulate nitrifying bacterial populations, and thus may increase nitrogen removal through coupled nitrification-denitrification in salt marsh sediments.  相似文献   
76.
77.
Click chemistries have been investigated for use in numerous biomaterials applications, including drug delivery, tissue engineering, and cell culture. In particular, light-mediated click reactions, such as photoinitiated thiol−ene and thiol−yne reactions, afford spatiotemporal control over material properties and allow the design of systems with a high degree of user-directed property control. Fabrication and modification of hydrogel-based biomaterials using the precision afforded by light and the versatility offered by these thiol−X photoclick chemistries are of growing interest, particularly for the culture of cells within well-defined, biomimetic microenvironments. Here, we describe methods for the photoencapsulation of cells and subsequent photopatterning of biochemical cues within hydrogel matrices using versatile and modular building blocks polymerized by a thiol−ene photoclick reaction. Specifically, an approach is presented for constructing hydrogels from allyloxycarbonyl (Alloc)-functionalized peptide crosslinks and pendant peptide moieties and thiol-functionalized poly(ethylene glycol) (PEG) that rapidly polymerize in the presence of lithium acylphosphinate photoinitiator and cytocompatible doses of long wavelength ultraviolet (UV) light. Facile techniques to visualize photopatterning and quantify the concentration of peptides added are described. Additionally, methods are established for encapsulating cells, specifically human mesenchymal stem cells, and determining their viability and activity. While the formation and initial patterning of thiol-alloc hydrogels are shown here, these techniques broadly may be applied to a number of other light and radical-initiated material systems (e.g., thiol-norbornene, thiol-acrylate) to generate patterned substrates.  相似文献   
78.
79.
Dysfunction of CFTR in cystic fibrosis (CF) airway epithelium perturbs the normal regulation of ion transport, leading to a reduced volume of airway surface liquid (ASL), mucus dehydration, decreased mucus transport, and mucus plugging of the airways. CFTR is normally expressed in ciliated epithelial cells of the surface and submucosal gland ductal epithelium and submucosal gland acinar cells. Critical questions for the development of gene transfer strategies for CF airway disease are what airway regions require CFTR function and how many epithelial cells require CFTR expression to restore normal ASL volume regulation and mucus transport to CF airway epithelium? An in vitro model of human CF ciliated surface airway epithelium (CF HAE) was used to test whether a human parainfluenza virus (PIV) vector engineered to express CFTR (PIVCFTR) could deliver sufficient CFTR to CF HAE to restore mucus transport, thus correcting the CF phenotype. PIVCFTR delivered CFTR to >60% of airway surface epithelial cells and expressed CFTR protein in CF HAE approximately 100-fold over endogenous levels in non-CF HAE. This efficiency of CFTR delivery fully corrected the basic bioelectric defects of Cl and Na+ epithelial ion transport and restored ASL volume regulation and mucus transport to levels approaching those of non-CF HAE. To determine the numbers of CF HAE surface epithelial cells required to express CFTR for restoration of mucus transport to normal levels, different amounts of PIVCFTR were used to express CFTR in 3%–65% of the surface epithelial cells of CF HAE and correlated to increasing ASL volumes and mucus transport rates. These data demonstrate for the first time, to our knowledge, that restoration of normal mucus transport rates in CF HAE was achieved after CFTR delivery to 25% of surface epithelial cells. In vivo experimentation in appropriate models will be required to determine what level of mucus transport will afford clinical benefit to CF patients, but we predict that a future goal for corrective gene transfer to the CF human airways in vivo would attempt to target at least 25% of surface epithelial cells to achieve mucus transport rates comparable to those in non-CF airways.  相似文献   
80.
Summary Employing serum-free media, human peripheral blood mononuclear cells, and purified recombinant interleukin-2 (IL-2), conditions were observed in which the development of IL-2-driven cytotoxic activity was suppressed. The cytotoxic activity of such IL-2-generated lymphokine activated killing (LAK) was tested against natural killer-resistant cultured tumor cells (Daudi, Raji, and a glioma). LAK generation was inhibited by addition of some normal sera, normal platelets, or some tumor cells. Because recent reports have indicated that transforming growth factor-beta (TGF-beta)-like factors are often secreted by tumors and the acidic alpha granules of platelets and can be present in sera, we tested the effect of purified human TGF-beta on the activation of LAK. Our results indicated that TGF-beta is very suppressive for LAK induction, and can completely prevent both the IL-2-driven proliferation and cytotoxicity at concentrations as low as 5 ng/ml. Titrations of IL-2 and of TGF-beta indicated that the suppression is dose-dependent and can be avoided by employing higher levels of IL-2. It was also found that the suppressive effect of TGF-beta can be overcome by washing suppressed cell populations and further culture in low levels of IL-2. Collectively, these data indicate that TGF-beta can be a potent inhibitor of LAK generation under standard activation conditions, but that this effect is regulated by the relative level of IL-2 and may be overcome and/or reversed in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号