首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   25篇
  273篇
  2019年   3篇
  2018年   3篇
  2016年   5篇
  2015年   7篇
  2014年   3篇
  2013年   6篇
  2012年   18篇
  2011年   10篇
  2010年   6篇
  2009年   9篇
  2008年   7篇
  2007年   2篇
  2006年   10篇
  2005年   5篇
  2004年   10篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   7篇
  1990年   6篇
  1989年   11篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1967年   2篇
  1952年   2篇
  1951年   1篇
  1950年   1篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
201.
202.
203.
The DNase I sensitivity of the nuclear genes encoding the NADPH-protochlorophyllide oxidoreductase, the light-harvesting chlorophyll a/b protein (LHCP), the hordeins and a 15-kDa protein of unknown function was assayed in chromatin of etiolated and green leaves and endosperm tissue of barley (Hordeum vulgare L.). A tissue-specific differentiation of chromatin structure was found for the LHCP, hordein and 15-kDa protein genes. The genes for the LHCP and the 15-kDa protein, which are expressed in leaf tissue, display DNase I sensitivity in leaves but not in endosperm. Hordein genes which are expressed solely in endosperm, were insensitive to low levels of digestion with DNase I in leaves but sensitive in endosperm. The effect of light on chromatin structure was determined by comparing leaves of etiolated plants and plants which had been grown under a day/night cycle. Only in the case of the 15-kDa protein is there a remarkable change from a DNAse-I-sensitive configuration in etiolated leaves to a more resistant one in leaves from illuminated plants. The gene for the NADPH-protochlorophyllide oxidoreductase was found to be equally sensitive to DNase I in leaves and endosperm.  相似文献   
204.
Faisal A  Stout D  Apel J  Bradley B 《PloS one》2010,5(11):e13718

Background

Early stone tools provide direct evidence of human cognitive and behavioral evolution that is otherwise unavailable. Proper interpretation of these data requires a robust interpretive framework linking archaeological evidence to specific behavioral and cognitive actions.

Methodology/Principal Findings

Here we employ a data glove to record manual joint angles in a modern experimental toolmaker (the 4th author) replicating ancient tool forms in order to characterize and compare the manipulative complexity of two major Lower Paleolithic technologies (Oldowan and Acheulean). To this end we used a principled and general measure of behavioral complexity based on the statistics of joint movements.

Conclusions/Significance

This allowed us to confirm that previously observed differences in brain activation associated with Oldowan versus Acheulean technologies reflect higher-level behavior organization rather than lower-level differences in manipulative complexity. This conclusion is consistent with a scenario in which the earliest stages of human technological evolution depended on novel perceptual-motor capacities (such as the control of joint stiffness) whereas later developments increasingly relied on enhanced mechanisms for cognitive control. This further suggests possible links between toolmaking and language evolution.  相似文献   
205.
206.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].  相似文献   
207.
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the ‘phospholipid code'', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host–microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.  相似文献   
208.
209.
Hauke Holtorf  Klaus Apel 《Planta》1996,199(2):289-295
In etiolated barley (Hordeum vulgare L.) seedlings the light-induced accumulation of chlorophyll is controlled by two light-dependent NADPH-proto-chlorophyllide oxidoreductase (POR; EC 1.6.99.1) enzymes. While the concentration of one of these enzymes (POR A) and its mRNA rapidly decline during illumination, the second POR protein (POR B) and its mRNA remain at an approximately constant level during the transition from dark growth to the light. These results may suggest that only one of the enzymes, POR B, operates throughout the greening process and in light-adapted mature plants while the second enzyme, POR A, is active only in etiolated seedlings at the beginning of illumination. The fate of the two POR proteins and their mRNAs in fully green plants, however, has not been studied yet. In the present work we determined changes in the level of POR A and POR B proteins and mRNAs in green barley plants kept under a diurnal 12 h light/12 h dark cycle. In green barley plants, not only POR B is present but also trace amounts of POR A continue to reappear transiently at the end of a night period and seem to be involved in the synthesis and accumulation of chlorophyll at the beginning of each day.Abbreviations Chl chlorophyll - Chlide chlorophyllide - Lhcb light-harvesting chlorophyll a/b protein - Pchlide protochlorophyllide - POR NADPH-protochlorophyllide oxidoreductase Dedicated to Horst Senger on the occasion of his 65th birthday.We thank Dr. Dieter Rubli for photography and Renate Langjahr for typing. This work was supported by the Swiss National Science Foundation and the ETH-Zürich.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号