首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   66篇
  2023年   7篇
  2022年   14篇
  2021年   17篇
  2020年   16篇
  2019年   10篇
  2018年   15篇
  2017年   8篇
  2016年   18篇
  2015年   28篇
  2014年   33篇
  2013年   55篇
  2012年   64篇
  2011年   48篇
  2010年   24篇
  2009年   23篇
  2008年   35篇
  2007年   37篇
  2006年   34篇
  2005年   20篇
  2004年   58篇
  2003年   37篇
  2002年   14篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   7篇
  1997年   6篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1990年   2篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   6篇
  1974年   8篇
  1972年   5篇
  1971年   8篇
  1970年   5篇
  1969年   3篇
  1968年   4篇
  1966年   5篇
  1965年   5篇
  1964年   3篇
  1962年   2篇
  1961年   2篇
  1959年   3篇
  1954年   2篇
  1946年   1篇
排序方式: 共有740条查询结果,搜索用时 20 毫秒
61.
Conjugated linoleic acid (CLA) causes insulin resistance and hepatic steatosis in conjunction with depletion of adipokines in some rodent models. Our objective was to determine whether the maintenance of adipokines, mainly leptin and adiponectin, by either removing CLA from diets or using an adiponectin enhancer, rosiglitazone (ROSI), could attenuate CLA-induced insulin resistance. Male C57BL/6 mice were consecutively fed two experimental diets containing 1.5% CLA mixed isomer for 4 weeks followed by a diet without CLA for 4 weeks. CLA significantly depleted adiponectin but not leptin and was accompanied by hepatic steatosis and insulin resistance. These effects were attenuated after switching mice to the diet without CLA along with restoration of adiponectin. To further elucidate the role of adiponectin in CLA-mediated insulin resistance, ROSI was used in a subsequent study in male ob/ob mice fed either control (CON) or CLA diet. ROSI maintained significantly higher adiponectin levels in CON- and CLA-fed mice and prevented the depletion of epididymal adipose tissue and the development of insulin resistance. In conclusion, we show that insulin resistance induced by CLA may be related more to adiponectin depletion than to leptin and that maintaining adiponectin levels alone either by removing CLA or using ROSI can attenuate these effects.  相似文献   
62.
In renal proximal tubules, VDR is transiently decreased by parathyroid hormone (PTH) during times of hypocalcemia and returns to normal levels with the rise in serum calcium (Ca). In this study we tested the hypothesis that elevated extracellular Ca induces VDR in a human renal proximal cell line (HK-2G) stably expressing PTH receptor type I. Exposure of HK-2G cells to increasing Ca concentration, up to 3 mM, induced the expression of VDR. The increase in VDR occurred within 1 h and was sustained over 24 h. The increase in VDR was also dose-dependently increased using 20–100 nM gadolinium, suggesting the induction of VDR is regulated via the extracellular Ca sensing receptor (CaSR) with is naturally expressed in HK-2G cells. In conclusion, an extracellular Ca concentration in the physiological range is capable of direct increase of renal proximal VDR expression, and the induction mechanism represents a strategy the body may use to counterbalance effects of PTH on renal Vitamin D metabolism.  相似文献   
63.
Three phase partitioning (TPP), a technique used in protein purification has been evaluated, for extraction of oil from three different plant sources viz: mango kernel, soybean and rice bran. The process consists of simultaneous addition of t-butanol (1:1,v/v) and ammonium sulphate (w/v) to a crude preparation/slurry. Under optimized condition, the protein appears as an interfacial precipitate between upper t-butanol containing oil and lower aqueous phase. Pretreatment of the slurries with a commercial enzyme preparation of proteases, Protizyme, followed by three phase partitioning resulted in 98%, 86% and 79% (w/w) oil yields in case of soybean, rice bran and mango kernel, respectively. The efficiency of the present technique is comparable to solvent extraction with an added advantage of being less time consuming and using t-butanol which is a safer solvent as compared to n-hexane used in conventional oil extraction process.  相似文献   
64.
The hemolymph protein HP19 of the rice moth, Corcyra cephalonica, mediates the 20-hydroxyecdysone (20E)-dependent acid phosphatase (ACP) activity at a nongenomic level. Affinity-purified polyclonal antibody against HP19 (alphaHP19-IgG) was used in the present study to understand the role of HP19 during the postembryonic development of Corcyra. In the in vitro studies, HP19 action was blocked either by immuno-precipitation using alphaHP19-IgG, prior to its addition to the fat body culture or by the addition of the antibody directly to the culture, along with 20E and hemolymph containing HP19. The alphaHP19-IgG blocked the HP19-mediated 20E-dependent ACP activation. In the in vivo studies, the alphaHP19-IgG was injected into the fully developed last (final/Vth) instar larvae of Corcyra, to complex the HP19 in vivo, in order to block the action of HP19. The injection of alphaHP19-IgG resulted in defective development of larvae, which grew either into non-viable larvae or larval-pupal/pupal-adult intermediates relative to the effect of pre-immune IgG injected controls. The present study shows that HP19 plays an important role in controlling the metamorphosis of Corcyra by regulating the 20E-dependent ACP activity. Coupled with the earlier findings, the ecdysteroid hormone regulates this action at a nongenomic level.  相似文献   
65.
Viruses exploit the cytoskeleton of host cells to transport their components and spread to neighbouring cells. Here we show that the actin cytoskeleton is involved in the release of Marburgvirus (MARV) particles. We found that peripherally located nucleocapsids and envelope precursors of MARV are located either at the tip or at the side of filopodial actin bundles. Importantly, viral budding was almost exclusively detected at filopodia. Inhibiting actin polymerization in MARV-infected cells significantly diminished the amount of viral particles released into the medium. This suggested that dynamic polymerization of actin in filopodia is essential for efficient release of MARV. The viral matrix protein VP40 plays a key role in the release of MARV particles and we found that the intracellular localization of recombinant VP40 and its release in form of virus-like particles were strongly influenced by overexpression or inhibition of myosin 10 and Cdc42, proteins important in filopodia formation and function. We suggest that VP40, which is capable of interacting with viral nucleocapsids, provides an interface of MARV subviral particles and filopodia. As filopodia are in close contact with neighbouring cells, usurpation of these structures may facilitate spread of MARV to adjacent cells.  相似文献   
66.
67.
Functionalized colloidal gold is widely used for qualitative and quantitative detection of specific analytes. We report here a novel modification of gold nanoparticles by digitonin, a glycoside used for precipitating membrane cholesterol. The specific molecular recognition of cholesterol by digitonin gold nanoparticles (DGNP), make it an attractive alternative to the existing enzymatic methods for cholesterol sensing. To enable cholesterol binding, we modified mercapto modified GNPs with digitonin, by a simple esterification reaction. The blue shift in the plasmon absorption spectra of DGNP with different cholesterol concentrations accompanied by a decrease in the absorbance is the principle applied here for the estimation. The observed size reduction followed by cholesterol binding is reasoned due to the enhanced hydophobicity of the surface which in turn expels the water layers associated with the particles prior to cholesterol binding. The method exhibited linearity between concentration of cholesterol and the corresponding absorbance of the plasmon peak, in the range of 160-600 ng/mL with a detection limit of 100±9 ng/mL. Other steroids did not show any binding affinity towards DGNP. The method depicted here has potential for development as an enzyme free sensor for cholesterol although many factors need to be addressed to transform it for assaying samples like blood.  相似文献   
68.
The vascular network is closely linked to the neural system, and an interdependence is displayed in healthy and in pathophysiological responses. How has close apposition of two such functionally different systems occurred? Here, we present a hypothesis for the evolution of the vascular network from an ancestral neural guidance system. Biological cornerstones of this hypothesis are the vascular endothelial growth factor (VEGF) protein family and cognate receptors. The primary sequences of such proteins are conserved from invertebrates, such as worms and flies that lack discernible vascular systems compared to mammals, but all these systems have sophisticated neuronal wiring involving such molecules. Ancestral VEGFs and receptors (VEGFRs) could have been used to develop and maintain the nervous system in primitive eukaryotes. During evolution, the demands of increased morphological complexity required systems for transporting molecules and cells, i.e., biological conductive tubes. We propose that the VEGF–VEGFR axis was subverted by evolution to mediate the formation of biological tubes necessary for transport of fluids, e.g., blood. Increasingly, there is evidence that aberrant VEGF-mediated responses are also linked to neuronal dysfunctions ranging from motor neuron disease, stroke, Parkinson’s disease, Alzheimer’s disease, ischemic brain disease, epilepsy, multiple sclerosis, and neuronal repair after injury, as well as common vascular diseases (e.g., retinal disease). Manipulation and correction of the VEGF response in different neural tissues could be an effective strategy to treat different neurological diseases.  相似文献   
69.
YagE is a 33 kDa prophage protein encoded by CP4-6 prophage element in Escherichia coli K12 genome. Here, we report the structures of YagE complexes with pyruvate (PDB Id 3N2X) and KDGal (2-keto-3-deoxy galactonate) (PDB Id 3NEV) at 2.2A resolution. Pyruvate depletion assay in presence of glyceraldehyde shows that YagE catalyses the aldol condensation of pyruvate and glyceraldehyde. Our results indicate that the biochemical function of YagE is that of a 2-keto-3-deoxy gluconate (KDG) aldolase. Interestingly, E. coli K12 genome lacks an intrinsic KDG aldolase. Moreover, the over-expression of YagE increases cell viability in the presence of certain bactericidal antibiotics, indicating a putative biological role of YagE as a prophage encoded virulence factor enabling the survival of bacteria in the presence of certain antibiotics. The analysis implies a possible mechanism of antibiotic resistance conferred by the over-expression of prophage encoded YagE to E. coli.  相似文献   
70.
Macrocyclization is a commonly used strategy to preorganize HCV NS3 protease inhibitors in their bioactive conformation. Moreover, macrocyclization generally leads to greater stability and improved pharmacokinetic properties. In HCV NS3 protease inhibitors, it has been shown to be beneficial to include a vinylated phenylglycine in the P2 position in combination with alkenylic P1' substituents. A series of 14-, 15- and 16-membered macrocyclic HCV NS3 protease inhibitors with the linker connecting the P2 phenylglycine and the alkenylic P1' were synthesized by ring-closing metathesis, using both microwave and conventional heating. Besides formation of the expected macrocycles in cis and trans configuration as major products, both ring-contracted and double-bond migrated isomers were obtained, in particular during formation of the smaller rings (14- and 15-membered rings). All inhibitors had K(i)-values in the nanomolar range, but only one inhibitor type was improved by rigidification. The loss in inhibitory effect can be attributed to a disruption of the beneficial π-π interaction between the P2 fragment and H57, which proved to be especially deleterious for the d-phenylglycine epimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号