首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   38篇
  2023年   5篇
  2022年   14篇
  2021年   16篇
  2020年   12篇
  2019年   10篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   25篇
  2014年   29篇
  2013年   40篇
  2012年   55篇
  2011年   38篇
  2010年   19篇
  2009年   18篇
  2008年   32篇
  2007年   33篇
  2006年   23篇
  2005年   15篇
  2004年   52篇
  2003年   31篇
  2002年   14篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有550条查询结果,搜索用时 140 毫秒
71.
Chitosan is a well sought-after polysaccharide in biomedical applications and has been blended with various macromolecules to mitigate undesirable properties. However, the effects of blending on the unique antibacterial activity of chitosan as well as changes in fatigue and degradation properties are not well understood. The aim of this work was to evaluate the anti-bacterial properties and changes in physicochemical properties of chitosan upon blending with synthetic polyester poly(epsilon-caprolactone) (PCL). Chitosan and PCL were homogeneously dissolved in varying mass ratios in a unique 77% acetic acid in water mixture and processed into uniform membranes. When subjected to uniaxial cyclical loading in wet conditions, these membranes sustained 10 cycles of predetermined loads up to 1 MPa without break. Chitosan was anti-adhesive to Gram-positive Streptococcus mutans and Gram-negative Actinobacillus actinomycetemcomitans bacteria. Presence of PCL compromised the antibacterial property of chitosan. Four-week degradation studies in PBS/lysozyme at 37 degrees C showed initial weight loss due to chitosan after which no significant changes were observed. Molecular interactions between chitosan and PCL were investigated using Fourier transform infrared spectroscopy (FTIR) which showed no chemical bond formations in the prepared blends. Investigation by wide-angle X-ray diffraction (WAXD) indicated that the crystal structure of individual polymers was unchanged in the blends. Dynamic mechanical and thermal analysis (DMTA) indicated that the crystallinity of PCL was suppressed and its storage modulus increased with the addition of chitosan. Analysis of surface topography by atomic force microscopy (AFM) showed a significant increase in roughness of all blends relative to chitosan. Observed differences in biological and anti-bacterial properties of blends could be primarily attributed to surface topographical changes.  相似文献   
72.
Memory and naive CD4 T cells have unique regulatory pathways for self/non-self discrimination. A memory cell specific regulatory pathway was revealed using superantigens to trigger the TCR. Upon stimulation by bacterial superantigens, like staphylococcal enterotoxin B (SEB), TCR proximal signaling is impaired leading to clonal tolerance (anergy). In the present report, we show that memory cell anergy results from the sequestration of the protein tyrosine kinase ZAP-70 away from the TCR/CD3ζ chain. During SEB-induced signaling, ZAP-70 is excluded from both detergent-resistant membrane microdomains and the immunological synapse, thus blocking downstream signaling. We also show that the mechanism underlying memory cell anergy must involve Fyn kinase, given that the suppression of Fyn activity restores the movement of ZAP-70 to the immunological synapse, TCR proximal signaling, and cell proliferation. Thus, toleragens, including microbial toxins, may modulate memory responses by targeting the organizational structure of memory cell signaling complexes.  相似文献   
73.
Mungbean germplasm characterization, evaluation and improvement are fundamentally based on morpho-agronomic traits. The lack of break-through in mungbean production has been due to non-availability of genetic variability for high yield potential. Forty-four genotypes of mungbean [Vigna radiata (L.)Wilczek] were subjected to random amplified polymorphic DNA (RAPD) analysis to assess the genetic diversity and relationships among the genotypes. Multilocus genotyping by twelve RAPD primers generated 166 markers and detected an average of intraspecific variation amounting to 82% polymorphism in banding patterns. Dendrogram obtained from cluster analysis delineated all the 44 genotypes into six clusters. Higher values of Nei’s gene diversity (h) and Shannon information index (i) and genetic distance analysis validate existence of wide genetic diversity among mungbean genotypes tested. Besides internal transcribed spacer (ITS) length variations, single nucleotide polymorphisms (SNPs) and insertions/deletions (INDELS) were detected at number of sites in nuclear rDNA region and the sequences of representatives of each sub-cluster and all distinct genotypes have been submitted to NCBI database and assigned Gen accession numbers HQ 148136-148147. Multiple sequence alignment revealed further lineages of distinct genotypes with main RAPD clusters. The measures of relative genetic distances among the genotypes of mungbean did not completely correlate the geographical places of their development. The homogeneous phenotypic markers proved insufficient in exhibiting genetic divergence among mungbean genotypes studied. RMG-62, RMG-976, and NDM-56 have been identified as potential source of parents for crop improvement. RAPD primers, OPA-9 and OPA-2 as polymorphic genetic markers and number of pods/plant and number of seeds/plant as dependable phenotypic markers have been identified for improving yield potentials. This genetic diversity will be of significance in developing intraspecific crosses in mungbean crop improvement programme.  相似文献   
74.
Lanthionines are novel neurotrophic and neuroprotective small molecules that show promise for the treatment of neurodegenerative diseases. In particular, a recently developed, cell permeable lanthionine derivative known as LKE (lanthionine ketimine 5-ethyl ester) promotes neurite growth at low nanomolar concentrations. LKE also has neuroprotective, anti-apoptotic, and anti-inflammatory properties. Its therapeutic potential in cerebral ischemia and its mechanisms of neurotrophic action remain to be fully elucidated. Here, we hypothesize that the neuroprotective actions of LKE could result from induction or modulation of CRMP2. We found that treating primary cultured mouse neurons with LKE provided significant protection against t-butyl hydroperoxide-induced neuronal death possibly through CRMP2 upregulation. Similarly, in vivo studies showed that LKE pre and/or post-treatment protects mice against permanent distal middle cerebral artery occlusion (p-MCAO) as evidenced by lower stroke lesions and improved functional outcomes in terms of rotarod, grip strength and neurologic deficit scores in treated groups. Protein expression levels of CRMP2 were higher in brain cortices of LKE pretreated mice, suggesting that LKE’s neuroprotective activity may be CRMP2 dependent. Lower activity of cleaved PARP-1 and higher activity of SIRT-1 was also observed in LKE treated group suggesting its anti-apoptotic properties. Our results suggest that LKE has potential as a therapeutic intervention in cerebral ischemia and that part of its protective mechanism may be attributed to CRMP2 mediated action and PARP-1/SIRT-1 modulation.  相似文献   
75.
76.
Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system (CNS) inflammation, decreased Th1 and Th17 responses, and an increase in regulatory T cells (Treg). In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC) that included a decrease in CD11c(+)CD11b(+)CD4(+) dendritic cells (DC) and an elevation of CD11b(hi)Gr1(hi) monocytes. CD11b(+) cells from these mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its effects on cells of the innate immune system, and may not influence T cells directly.  相似文献   
77.
Cerebrospinal fluid (CSF) biomarkers T-Tau and Aβ(42) are linked with Alzheimer's disease (AD), yet little is known about the relationship between CSF biomarkers and structural brain alteration in healthy adults. In this study we examined the extent to which AD biomarkers measured in CSF predict brain microstructure indexed by diffusion tensor imaging (DTI) and volume indexed by T1-weighted imaging. Forty-three middle-aged adults with parental family history of AD received baseline lumbar puncture and MRI approximately 3.5 years later. Voxel-wise image analysis methods were used to test whether baseline CSF Aβ(42), total tau (T-Tau), phosphorylated tau (P-Tau) and neurofilament light protein predicted brain microstructure as indexed by DTI and gray matter volume indexed by T1-weighted imaging. T-Tau and T-Tau/Aβ(42) were widely correlated with indices of brain microstructure (mean, axial, and radial diffusivity), notably in white matter regions adjacent to gray matter structures affected in the earliest stages of AD. None of the CSF biomarkers were related to gray matter volume. Elevated P-Tau and P-Tau/Aβ(42) levels were associated with lower recognition performance on the Rey Auditory Verbal Learning Test. Overall, the results suggest that CSF biomarkers are related to brain microstructure in healthy adults with elevated risk of developing AD. Furthermore, the results clearly suggest that early pathological changes in AD can be detected with DTI and occur not only in cortex, but also in white matter.  相似文献   
78.
Low transpiration rates in pearl millet under fully irrigated conditions decrease plant water use at vegetative stage and then increase the water availability during grain filling and finally the terminal drought tolerance. Hundred and thirteen recombinant inbred lines developed from a cross between H77/833-2 and PRLT2/89-33 (terminal drought-sensitive?×?tolerant genotype) were evaluated to map transpiration rate (Tr, a proxy for canopy conductance), organ weights, leaf area and thickness and to study their interactions. Transpiration rate was increased by two H77/833-2 and two PRLT2/89-33 alleles on linkage group (LG) 2, whose importance depended on the vapor pressure deficit. The two H77/833-2 and one PRLT2/89-33 alleles co-mapped to a previously identified major terminal drought tolerance quantitative trait locus (QTL), although in a much smaller genetic interval. The other Tr allele from H77/833-2 also enhanced biomass dry weight and co-located with a formerly identified stover and tillering QTL. Leaf characteristics were linked to two loci on LG7. Plant water use was increased and decreased by different loci combinations for Tr, tillering and leaf characteristics, whose respective importance depended on the environmental conditions. Therefore, different alleles influence plant water use and have close interactions with one another and with the environment, so that different ideotypes for plant water use exist or could be designed from specific allele combinations conferring particular physiological characteristics for specific adaptation to a range of terminal drought conditions.  相似文献   
79.
Bulk flow constitutes a substantial part of the slow transport of soluble proteins in axons. Though the underlying mechanism is unclear, evidences indicate that intermittent, kinesin-based movement of large protein-aggregates aids this process. Choline acetyltransferase (ChAT), a soluble enzyme catalyzing acetylcholine synthesis, propagates toward the synapse at an intermediate, slow rate. The presynaptic enrichment of ChAT requires heterotrimeric kinesin-2, comprising KLP64D, KLP68D and DmKAP, in Drosophila. Here, we show that the bulk flow of a recombinant Green Fluorescent Protein-tagged ChAT (GFP::ChAT), in Drosophila axons, lacks particulate features. It occurs for a brief period during the larval stages. In addition, both the endogenous ChAT and GFP::ChAT directly bind to the KLP64D tail, which is essential for the GFP::ChAT entry and anterograde flow in axon. These evidences suggest that a direct interaction with motor proteins could regulate the bulk flow of soluble proteins, and thus establish their asymmetric distribution.  相似文献   
80.
Here we report on a novel fluorescent analog of phenytoin as a potential inhibitor of neuropathic pain with potential use as an imaging agent. Compound 2 incorporated a heptyl side chain and dansyl moiety onto the parent compound phenytoin and produced greater displacement of BTX from sodium channels and greater functional blockade with greatly reduced toxicity. Compound 2 reduced mechano-allodynia in a rat model of neuropathic pain and was visualized ex vivo in sensory neuron axons with two-photon microscopy. These results suggest a promising strategy for developing novel sodium channel inhibitors with imaging capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号