首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   523篇
  免费   38篇
  561篇
  2023年   7篇
  2022年   15篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   13篇
  2017年   7篇
  2016年   14篇
  2015年   26篇
  2014年   29篇
  2013年   40篇
  2012年   57篇
  2011年   39篇
  2010年   20篇
  2009年   18篇
  2008年   33篇
  2007年   34篇
  2006年   23篇
  2005年   15篇
  2004年   52篇
  2003年   31篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有561条查询结果,搜索用时 15 毫秒
531.
Snake bite injuries and death are socio-medical problems of considerable magnitude. In India a large number of people suffer and die every year due to snake venom poisoning. Snake venom, though greatly feared, is a natural biological resource, containing several components that could be of potential therapeutic value. Use of snake venom in different pathophysiological conditions has been mentioned in Ayurveda, homeopathy and folk medicine. It is well known that snake venom is complex mixture of enzymes, peptides and proteins of low molecular mass with specific chemical and biological activities. Snake venom contains several neurotoxic, cardiotoxic, cytotoxic, nerve growth factor, lectins, disintrigrins, haemorrhagins and many other different enzymes. These proteins not only inflict death to animals and humans, but can also be used for the treatment of thrombosis, arthritis, cancer and many other diseases. An overview of various snake venom components that have prospects in health and diseases are discussed in this review.  相似文献   
532.
Protective antigen (PA) of Bacillus anthracis is the main immunogen of all anthrax vaccines. It is a highly thermolabile molecule and loses its activity rapidly when exposed to higher temperatures. Earlier some cosolvents had been used to stabilize PA with variable success but no study has been done to find out the primary cause of PA thermal inactivation. This study aims at elucidating the predominant cause of thermal inactivation of PA in order to develop more effective strategies for its thermostabilization. The prime cause for the loss of biological activity of PA at high temperature was its aggregation and an inverse correlation between PA activity and its aggregation on heating was observed. Inactivation of the protein by autolysis did not occur. This paper reports the use of a series of polyol osmolytes to stabilize PA. Different polyols stabilized PA to a different extent against thermal inactivation in a concentration dependent manner, with glycerol stabilizing to the maximum extent. Addition of NaCl to glycerol solution further enhanced the thermal stability of PA. An increase in the T(1/2) value, the temperature at which 50% of the activity is retained during short-term incubation, of more than 20 degrees C was observed. The half-life (t(1/2)) of PA thermal inactivation at 40 degrees C increased by more than 6 times in the presence of the mixture of glycerol and NaCl as compared to control. This study demonstrates for the first time that aggregation of the PA molecule is the predominant cause of its thermal inactivation, and can be very effectively prevented by the use of glycerol and other polyols to increase the shelf life of the recombinant vaccine against anthrax.  相似文献   
533.
Three phase partitioning (protein precipitate obtained as an interfacial layer between lower aqueous and upper t-butanol phases, formed by the addition of ammonium sulphate and t-butanol to the aqueous solution of protein) followed by lyophilization in the presence of two-component excipient resulted in 400-480x increases in transesterification activity of lyophilized powders of subtilisin Carlsberg, depending on the solvent. The three phase partitioned enzyme, 'dried' by washing with butanol, gave 3-4x higher rates (depending on the solvent used) than the enzyme preparation dried by lyophilization in the presence of two-component excipient system.  相似文献   
534.
535.
Pro-oxidant and anti-oxidant systems and their levels have significant roles in occlusive vascular diseases. In the present communication, we have measured the levels of some representative anti-oxidant enzymes in the blood of the patients of myocardial infarction after reperfusion and compared them to age and sex matched healthy persons. Our findings show that the activities of anti-oxidant enzymes (viz. SOD, catalase and glutathione reductase) are significantly decreased whereas there is significant increase in the levels of malonaldialdehyde (a marker of free radical-mediated damage) in the patients. The findings point out that ischemic myocardial disorders are associated with excessive free radical generation and free radical-mediated damage of lipids.  相似文献   
536.
Bidirectional promoters are defined as those that regulate adjacent genes organized in a divergent fashion (head to head orientation) and separated by < 1 kb. In order to dissect bidirectional promoter activity in a model plant, deletion analysis was performed for seven rice promoters using promoter-reporter gene constructs, which identified three promoters to be bidirectional. Regulatory elements located in or close to the 5′-untranslated regions (UTR) of one of the genes (divergent gene pair) were found to be responsible for their bidirectional activity. DNA footprinting analysis identified unique protein binding sites in these promoters. Deletion/alteration of these motifs resulted in significant loss of expression of the reporter genes on either side of the promoter. Changes in the motifs at both the positions resulted in a remarkable decrease in bidirectional activity of the reporter genes flanking the promoter. Based on our results, we propose a novel mechanism for the bidirectionality of rice bidirectional promoters.  相似文献   
537.
The hemagglutinin-neuraminidase (HN) protein of paramyxoviruses carries out three distinct activities contributing to the ability of HN to promote viral fusion and entry: receptor binding, receptor cleavage (neuraminidase), and activation of the fusion protein. The relationship between receptor binding and fusion triggering functions of HN are not fully understood. For Newcastle disease virus (NDV), one bifunctional site (site I) on HN's globular head can mediate both receptor binding and neuraminidase activities, and a second site (site II) in the globular head is also capable of mediating receptor binding. The receptor analog, zanamivir, blocks receptor binding and cleavage activities of NDV HN's site I while activating receptor binding by site II. Comparison of chimeric proteins in which the globular head of NDV HN is connected to the stalk region of either human parainfluenza virus type 3 (HPIV3) or Nipah virus receptor binding proteins indicates that receptor binding to NDV HN site II not only can activate its own fusion (F) protein but can also activate the heterotypic fusion proteins. We suggest a general model for paramyxovirus fusion activation in which receptor engagement at site II plays an active role in F activation.  相似文献   
538.
The primary eukaryotic single-stranded DNA-binding protein, Replication protein A (RPA), binds to single-stranded DNA at the sites of DNA damage and recruits the apical checkpoint kinase, ATR via its partner protein, ATRIP. It has been demonstrated that absence of RPA incapacitates the ATR-mediated checkpoint response. We report that in the absence of RPA, human single-stranded DNA-binding protein 1 (hSSB1) and its partner protein INTS3 form sub-nuclear foci, associate with the ATR-ATRIP complex and recruit it to the sites of genomic stress. The ATRIP foci formed after RPA depletion are abrogated in the absence of INTS3, establishing that hSSB-INTS3 complex recruits the ATR-ATRIP checkpoint complex to the sites of genomic stress. Depletion of homologs hSSB1/2 and INTS3 in RPA-deficient cells attenuates Chk1 phosphorylation, indicating that the cells are debilitated in responding to stress. We have identified that TopBP1 and the Rad9-Rad1-Hus1 complex are essential for the alternate mode of ATR activation. In summation, we report that the single-stranded DNA-binding protein complex, hSSB1/2-INTS3 can recruit the checkpoint complex to initiate ATR signaling.  相似文献   
539.
540.
Summary Salt-soluble polypeptide and a few isozymes were profiled to identify banana cultivars available in Andamans, India. Salt-soluble polypeptide profile was found to be inappropriate in cultivar identification However, isozymes such as peroxidase could differentiate ‘Jungli kela’, ‘Tissue Cultured Dwarf Cavendish’ (TCDC), ‘Lal kela’, ‘Rajbel’, and ‘Baratang wild’, while esterase identified all the cultivars except ‘Rajbel’ and ‘Tarkari kela’. The latter two cultivars could be identified with the use of malate dehydrogenase (MDH) and peroxidase profiles, MDH portrayed cultivar-specific distinct banding pattern in ‘Khatta Champa’, ‘Tarkari kela’, and ‘Baratang wild’, ‘China kela’ could be identified easily by superoxide dismutase (SOD). Amongst four isozymes, esterase was found to be most efficient in identifying eight cultivars amongst 10; bence this isozyme may be used often as a marker for cultivar identification of banana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号