首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1194篇
  免费   82篇
  1276篇
  2023年   10篇
  2022年   21篇
  2021年   26篇
  2020年   18篇
  2019年   17篇
  2018年   21篇
  2017年   13篇
  2016年   26篇
  2015年   44篇
  2014年   59篇
  2013年   70篇
  2012年   95篇
  2011年   69篇
  2010年   39篇
  2009年   36篇
  2008年   50篇
  2007年   53篇
  2006年   53篇
  2005年   39篇
  2004年   75篇
  2003年   50篇
  2002年   37篇
  2001年   27篇
  2000年   27篇
  1999年   17篇
  1998年   12篇
  1997年   14篇
  1996年   17篇
  1995年   8篇
  1993年   9篇
  1992年   17篇
  1991年   16篇
  1990年   22篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   11篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   11篇
  1978年   7篇
  1975年   8篇
  1974年   14篇
  1973年   5篇
  1971年   5篇
  1969年   5篇
排序方式: 共有1276条查询结果,搜索用时 15 毫秒
991.
992.
ATP-binding cassette (ABC) transporters utilize the energy present in cellular ATP to drive the translocation of structurally diverse set of solutes across the membrane barriers of eubacteria, archaebacteria and eukaryotes. In bacteria, these transporters are considered to be important virulence factors because they play role in nutrient uptake and in the secretion of toxins. The advances in structural determination and functional analysis of bacterial transporters have greatly increased our understanding of the mechanism of transport of these ABC transporters. Although progress in the field of structural biology has been made with the prokaryotic family members, it is likely that eukaryotic transporters will utilize the same mechanisms for translocation process. In this review, we summarize the function of the known MsbA ABC transporters in E. coli and mechanistic insights from structural and possible flippase mechanism studies.  相似文献   
993.
Heat shock proteins are ubiquitously expressed intracellular proteins and act as molecular chaperones in processes like protein folding and protein trafficking between different intracellular compartments. They are induced during stress conditions like oxidative stress, nutritional deficiencies and radiation. They are released into extracellular compartment during necrosis. However, recent research findings highlights that, they are not solely present in cytoplasm, but also released into extracellular compartment during normal conditions and even in the absence of necrosis. When present in extracellular compartment, they have been shown to perform various functions like antigen presentation, intercellular signaling and induction of pro-inflammatory cytokines. Heat shock proteins represents as dominant microbial antigens during infection. The phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins has led to proposition that, microbial heat shock proteins can induce self reactivity to host heat shock proteins and result in autoimmune diseases. The self-reactivity of heat shock proteins protects host against disease by controlling induction and release of pro-inflammatory cytokines. However, antibodies to self heat shock proteins haven been implicated in pathogenesis of autoimmune diseases like arthritis and atherosclerosis. Some heat shock proteins are potent inducers of innate and adaptive immunity. They activate dendritic cells and natural killer cells through toll-like receptors, CD14 and CD91. They play an important role in MHC-antigen processing and presentation. These immune effector functions of heat shock proteins are being exploited them as therapeutic agents as well as therapeutic targets for various infectious diseases and cancers.  相似文献   
994.
Rise in the availability of fast-food restaurants has been blamed, at least partly, for the increasing obesity in the U.S. The existing studies of obesity have focused primarily on children, adolescents, and adults, and this paper extends the literature by raising a little-studied question and using nationally representative data to answer it. It examines the relationship between the supply of fast-food restaurants and weight gain of pregnant women and their newborns. I study prenatal weight gain because excessive weight gain has been linked to postpartum overweight/obesity and I study both tails of the birthweight distribution because the origin of obesity may be traced to the prenatal period and both tail outcomes have been associated with obesity later in life. I merge the 1998 and 2004 Natality Detail Files with the Area Resource File, and County Business Patterns, which provide data on the number of fast-food restaurants in the metropolitan area where the mother resides. The empirical model includes an extensive list of MSA characteristics and MSA fixed effects to control for factors that may be correlated with both health outcomes and restaurants’ location decision. Results reveal that the fast-food and weight gain relationship is robust to the inclusion of these controls but these controls greatly mitigate the fast food–infant health relationship. Greater access to fast-food restaurants is positively related to mothers’ probability of excessive weight gain but it does not share a statistically significant relationship with birthweight. These relationships hold in all the socioeconomic and demographic subgroups studied.  相似文献   
995.

Background

Transposons are useful tools for creating transgenic organisms, insertional mutagenesis, and genome engineering. TcBuster, a novel hAT-family transposon system derived from the red flour beetle Tribolium castaneum, was shown to be highly active in previous studies in insect embryoes.

Methodology/Principal Findings

We tested TcBuster for its activity in human embryonic kidney 293 (HEK-293) cells. Excision footprints obtained from HEK-293 cells contained small insertions and deletions consistent with a hAT-type repair mechanism of hairpin formation and non-homologous end-joining. Genome-wide analysis of 23,417 piggyBac, 30,303 Sleeping Beauty, and 27,985 TcBuster integrations in HEK-293 cells revealed a uniquely different integration pattern when compared to other transposon systems with regards to genomic elements. TcBuster experimental conditions were optimized to assay TcBuster activity in HEK-293 cells by colony assay selection for a neomycin-containing transposon. Increasing transposon plasmid increased the number of colonies, whereas gene transfer activity dependent on codon-optimized transposase plasmid peaked at 100 ng with decreased colonies at the highest doses of transposase DNA. Expression of the related human proteins Buster1, Buster3, and SCAND3 in HEK-293 cells did not result in genomic integration of the TcBuster transposon. TcBuster, Tol2, and piggyBac were compared directly at different ratios of transposon to transposase and found to be approximately comparable while having their own ratio preferences.

Conclusions/Significance

TcBuster was found to be highly active in mammalian HEK-293 cells and represents a promising tool for mammalian genome engineering.  相似文献   
996.
Cancer is largely marked by genetic instability. Specific inhibition of individual proteins or signalling pathways that regulate genetic stability during cell division thus hold a great potential for cancer therapy. The Aurora A kinase is a Ser/Thr kinase that plays a critical role during mitosis and cytokinesis and is found upregulated in several cancer types. It is functionally regulated by its interactions with TPX2, a candidate oncogene. Aurora A inhibitors have been proposed as anticancer drugs that work by blocking its ATP binding site. This site is common to other kinases and hence these inhibitors lack specificity for Aurora A inhibition in particular, thus advocating the need of some alternative inhibition route. Previously, we identified TPX2 as a cellular target for withanone that selectively kill cancer cells. By computational approach, we found here that withanone binds to TPX2-Aurora A complex. In experiment, withanone treatment to cancer cells indeed resulted in dissociation of TPX2-Aurora A complex and disruption of mitotic spindle apparatus proposing this as a mechanism of the anticancer activity of withanone. From docking analysis, non-formation/disruption of the active TPX2-Aurora A association complex could be discerned. Our MD simulation results suggesting the thermodynamic and structural stability of TPX2-Aurora A in complex with withanone further substantiates the binding. We report a computational rationale of the ability of naturally occurring withanone to alter the kinase signalling pathway in an ATP-independent manner and experimental evidence in which withanone cause inactivation of the TPX2-Aurora A complex. The study demonstrated that TPX2-Aurora A complex is a target of withanone, a potential natural anticancer drug.  相似文献   
997.
Purushotham A  Xu Q  Li X 《FASEB journal》2012,26(2):656-667
SIRT1 is a highly-conserved NAD(+)-dependent protein deacetylase that plays essential roles in the regulation of energy metabolism, genomic stability, and stress response. Although the functions of SIRT1 in many organs have been extensively studied in tissue-specific knockout mouse models, the systemic role of SIRT1 is still largely unknown as a result of severe developmental defects that result from whole-body knockout in mice. Here, we investigated the systemic functions of SIRT1 in metabolic homeostasis by utilizing a whole-body SIRT1 heterozygous mouse model. These mice are phenotypically normal under standard feeding conditions. However, when chronically challenged with a 40% fat diet, they become obese and insulin resistant, display increased serum cytokine levels, and develop hepatomegaly. Hepatic metabolomic analyses revealed that SIRT1 heterozygous mice have elevated gluconeogenesis and oxidative stress. Surprisingly, they are depleted of glycerolipid metabolites and free fatty acids, yet accumulate lysolipids. Moreover, high-fat feeding induces elevation of serum testosterone levels and enlargement of seminal vesicles in SIRT1 heterozygous males. Microarray analysis of liver mRNA indicates that they have altered expression of genes involved in steroid metabolism and glycerolipid metabolism. Taken together, our findings indicate that SIRT1 plays a vital role in the regulation of systemic energy and steroid hormone homeostasis.  相似文献   
998.
999.
1000.
Conventional autophagy is a lysosome-dependent degradation process that has crucial homeostatic and regulatory functions in eukaryotic organisms. As malaria parasites must dispose a number of self and host cellular contents, we investigated if autophagy in malaria parasites is similar to the conventional autophagy. Genome wide analysis revealed a partial autophagy repertoire in Plasmodium, as homologs for only 15 of the 33 yeast autophagy proteins could be identified, including the autophagy marker Atg8. To gain insights into autophagy in malaria parasites, we investigated Plasmodium falciparum Atg8 (PfAtg8) employing techniques and conditions that are routinely used to study autophagy. Atg8 was similarly expressed and showed punctate localization throughout the parasite in both asexual and sexual stages; it was exclusively found in the pellet fraction as an integral membrane protein, which is in contrast to the yeast or mammalian Atg8 that is distributed among cytosolic and membrane fractions, and suggests for a constitutive autophagy. Starvation, the best known autophagy inducer, decreased PfAtg8 level by almost 3-fold compared to the normally growing parasites. Neither the Atg8-associated puncta nor the Atg8 expression level was significantly altered by treatment of parasites with routinely used autophagy inhibitors (cysteine (E64) and aspartic (pepstatin) protease inhibitors, the kinase inhibitor 3-methyladenine, and the lysosomotropic agent chloroquine), indicating an atypical feature of autophagy. Furthermore, prolonged inhibition of the major food vacuole protease activity by E64 and pepstatin did not cause accumulation of the Atg8-associated puncta in the food vacuole, suggesting that autophagy is primarily not meant for degradative function in malaria parasites. Atg8 showed partial colocalization with the apicoplast; doxycycline treatment, which disrupts apicoplast, did not affect Atg8 localization, suggesting a role, but not exclusive, in apicoplast biogenesis. Collectively, our results reveal several atypical features of autophagy in malaria parasites, which may be largely associated with non-degradative processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号