首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   0篇
  106篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   10篇
  2012年   14篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   8篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1996年   2篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
31.
An immature vasa vasorum in the adventitia of arteries has been implicated in induction of the formation of unstable atherosclerotic plaques. Normalization/maturation of the vasa vasorum may be an attractive therapeutic approach for arteriosclerotic diseases. Nerve growth factor (NGF) is a pleotropic molecule with angiogenic activity in addition to neural growth effects. However, whether NGF affects the formation of microvessels in addition to innervation during pathological angiogenesis is unclear. In the present study, we show a new role for NGF in neovessels around injured arterial walls using a novel in vivo angiogenesis assay.  相似文献   
32.
33.
Crickets respond to air currents with quick avoidance behavior. The terminal abdominal ganglion (TAG) has a neuronal circuit for a wind-detection system to elicit this behavior. We investigated neuronal transmission from cercal sensory afferent neurons to ascending giant interneurons (GIs). Pharmacological treatment with 500 muM acetylcholine (ACh) increased neuronal activities of ascending interneurons with cell bodies located in the TAG. The effects of ACh antagonists on the activities of identified GIs were examined. The muscarinic ACh antagonist atropine at 3-mM concentration had no obvious effect on the activities of GIs 10-3, 10-2, or 9-3. On the other hand, a 3-mM concentration of the nicotinic ACh antagonist mecamylamine decreased spike firing of these interneurons. Immunohistochemistry using a polyclonal anti-conjugated acetylcholine antibody revealed the distribution of cholinergic neurons in the TAG. The cercal sensory afferent neurons running through the cercal nerve root showed cholinergic immunoreactivity, and the cholinergic immunoreactive region in the neuropil overlapped with the terminal arborizations of the cercal sensory afferent neurons. Cell bodies in the median region of the TAG also showed cholinergic immunoreactivity. This indicates that not only sensory afferent neurons but also other neurons that have cell bodies in the TAG could use ACh as a neurotransmitter.  相似文献   
34.
Osteocytes embedded in calcified bone matrix have been widely believed to play important roles in mechanosensing to achieve adaptive bone remodeling in a changing mechanical environment. In vitro studies have clarified several types of mechanical stimuli such as hydrostatic pressure, fluid shear stress, and direct deformation influence osteocyte functions. However, osteocyte response to mechanical stimuli in the bone matrix has not been clearly understood. In this study, we observed the osteocyte calcium signaling response to the quantitatively applied deformation in the bone matrix. A novel experimental system was developed to apply deformation to cultured bone tissue with osteocytes on a microscope stage. As a mechanical stimulus to the osteocytes in bone matrix, in-plane shear deformation was applied using a pair of glass microneedles to bone fragments, obtained from 13-day-old embryonic chick calvariae. Deformation of bone matrix and cells was quantitatively evaluated using an image correlation method by applying for differential interference contrast images of the matrix and fluorescent images of immunolabeled osteocytes, together with imaging of the cellular calcium transient using a ratiometric method. As a result, it was confirmed that the newly developed system enables us to apply deformation to bone matrix and osteocytes successfully under the microscope without significant focal plane shift or deviation from the observation view field. The system could be a basis for further development to investigate the mechanosensing mechanism of osteocytes in bone matrix through examination of various types of rapid biochemical signaling responses and intercellular communication induced by matrix deformation.  相似文献   
35.
Cricket brains were incubated in a saline containing nitric oxide (NO)-donor and phosphodiesterase inhibitor IBMX, which could activate soluble guanylate cyclase (sGC) to increase cGMP levels in the targets of NO. The increase of cGMP was detected by immunohistochemistry and enzyme linked immunosorbent assay. NO-induced cGMP immunohistochemistry revealed that many cell bodies of cricket brain showed cGMP immunoreactivity when preparations were treated with a saline containing 10 mM NO-donor SNP and phosphodiesterase inhibitor IBMX, but only a few cell bodies showed immunoreactivity when preparations were incubated without NO-donor. The concentration of cGMP in cricket brains were then measured by using cGMP-specific enzyme linked immunosorbent assay. Cricket brains were treated with a saline containing 1 microM of NO-donor NOR3 and 1 mM IBMX. The cGMP levels in the brain were increased about 75% compared to control preparations that was treated with a cricket saline containing IBMX. The level of cGMP decreased about 40% when preparations were incubated NOR3 saline containing sGC inhibitor ODQ. These results indicate that NO activates sGC and increases the levels of cGMP in particular neurons of the cricket brain and that the level of cGMP would be kept a particular level, which might regulate synaptic efficacy in the neurotransmission.  相似文献   
36.
We have analysed the effects of the neuromodulator nitric oxide (NO) on proprioceptive information processing by ascending intersegmental interneurons that form part of the local circuits within the terminal abdominal ganglion of the crayfish. NO modulates the synaptic inputs to ascending interneurons, enhancing the amplitude of class I interneurons and reducing the amplitude of class II interneurons. Repetitive proprioceptive stimulation leads to rapid depression in a specific set of identified interneurons but not in others. Bath application of a nitric oxide scavenger, PTIO, causes a significant decrease in the rate of depression of the interneurons showing a rapid depression, independent of interneuron class, but has no effect on the dynamic responses of the interneurons that show little initial depression. These results indicate that NO exerts multiple effects at the very first stage of synaptic integration in local circuits.  相似文献   
37.
We have discovered and reported potent p53–MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Our lead showed strong activity in vitro, but did not exhibit antitumor efficacy in vivo for the low metabolic stability. In order to obtain orally active compounds, we executed further optimization of our lead by the improvement of physicochemical properties. Thus we furnished optimal compounds by introducing an alkyl group onto the pyrrolidine at the C-2 substituent to prevent the metabolism; and modifying the terminal substituent of the proline motif improved solubility. These optimal compounds exhibited good PK profiles and significant antitumor efficacy with oral administration on a xenograft model using MV4-11 cells having wild type p53.  相似文献   
38.
Okadaic acid (OA) is a specific and strong inhibitor of protein phosphatase 1 and 2A present in eukaryotes, and a potent promoter of carcinogenesis in mouse skin. In this study, we examined the mutagenicity of OA. OA did not induce mutations in S. typhimurium TA100 and TA98, with or without a microsomal metabolic activation system. However, it was strongly mutagenic to Chinese hamster lung (CHL) cells without a microsomal activation system, as shown using diphtheria toxin (DT) resistance (DTr) as a selective marker. Treatment of CHL cells with OA at 17.5 ng/ml induced 164 DTr mutants per 106 survivors. A plot of the mutation frequency against the OA concentration gave a concave curve, and the mutant frequency was calculated to be 5500/106 survivors/μg, with OA in the dose range of 10–15 ng/ml. This value was about 680 times that of ethyl methanesulfonate (EMS), and comparable to that of 2-amino-N6-hydroxyadenine, one of the strongest knowon mutgens. Elongation factor 2 (EF-2) obtained from 4 DTr clones was not ADP-ribosylated by DT fragment A. PCR-direct sequencing revealed that the hot spot of EF-2 for EMS mutagenesis in CHO-K1 cells, the first letter of codon 717, was not a t spot for OA mutagenesis in CHL cells.  相似文献   
39.
Giant interneurones mediate a characteristic `tail flip' escape response of the crayfish, Procambarus clarkii, which move it rapidly away from the source of stimulation. We have analysed the synaptic connections of proprioceptive sensory neurones with one type of giant interneurone, the lateral giant. Spikes in sensory neurones innervating an exopodite-endopodite chordotonal organ in the tailfan, which monitors the position and movements of the exopodite, are followed at a short and constant latency by excitatory postsynaptic potentials in a lateral giant interneurone (LG) recorded in the terminal abdominal ganglion. These potentials are unaffected by manipulation of the membrane potential of LG, by bath application of saline with a low calcium concentration, or by one containing the nicotinic antagonist, curare. The potentials evoked in LG by chordotonal organ stimulation are thus thought to be monosynaptic and electrically mediated. This is the first demonstration that LG receives input from sensory receptors other than exteroceptors in the terminal abdominal ganglion. Accepted: 7 April 1997  相似文献   
40.

Aims

Cardiac hypertrophy is elicited by endothelin (ET)-1 as well as other neurohumoral factors, hemodynamic overload, and oxidative stress; HMG-CoA reductase inhibitors (statins) were shown to inhibit cardiac hypertrophy partly via the anti-oxidative stress. One of their common intracellular pathways is the phosphorylation cascade of MEK signaling. Pin1 specifically isomerizes the phosphorylated protein with Ser/Thr-Pro bonds and regulates their activity through conformational changes. There is no report whether the Pin1 activation contributes to ET-1-induced cardiomyocyte hypertrophy and whether the Pin1 inactivation contributes to the inhibitory effect of statins. The aim of this study was to reveal these questions.

Main methods

We assessed neonatal rat cardiomyocyte hypertrophy using ET-1 and fluvastatin by the cell surface area, ANP mRNA expression, JNK and c-Jun phosphorylation, and [3H]-leucine incorporation.

Key findings

Fluvastatin inhibited ET-1-induced increase in the cell surface area, ANP expression, and [3H]-leucine incorporation; and it suppressed the signaling cascade from JNK to c-Jun. The phosphorylated Pin1 level, an inactive form, was decreased by ET-1; however, it reached basal level by fluvastatin. Furthermore, Pin1 overexpression clearly elicited cardiomyocyte hypertrophy, which was inhibited by fluvastatin.

Significance

This is the first report that ET-1-induced cardiomyocyte hypertrophy is mediated through the Pin1 activation and that the inhibitory effect of fluvastatin on cardiomyocyte hypertrophy would partly be attributed to the suppression of the Pin1 function. This study firstly suggests that Pin1 determines the size of hypertrophied cardiomyocyte by regulating the activity of phosphorylated molecules and that statins exert their pleiotropic effects partly via Pin1 inactivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号