首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   48篇
  553篇
  2022年   2篇
  2021年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   15篇
  2014年   11篇
  2013年   29篇
  2012年   26篇
  2011年   16篇
  2010年   18篇
  2009年   10篇
  2008年   23篇
  2007年   22篇
  2006年   29篇
  2005年   23篇
  2004年   24篇
  2003年   31篇
  2002年   25篇
  2001年   20篇
  2000年   18篇
  1999年   13篇
  1998年   8篇
  1997年   12篇
  1995年   11篇
  1994年   7篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   8篇
  1989年   11篇
  1988年   10篇
  1987年   13篇
  1986年   6篇
  1985年   7篇
  1984年   9篇
  1983年   9篇
  1982年   5篇
  1980年   2篇
  1979年   4篇
  1977年   5篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1968年   3篇
  1962年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
81.
82.
Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.  相似文献   
83.
We examined the effects of the mutual substitution of amino acid residues at positions 216 and 219 between rat CYP2D1 and CYP2D2 on their microsomal contents and enzymatic functions using a yeast cell expression system and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) as a substrate. CYP2D1 has amino acid residues, leucine and valine, at positions of 216 and 219, respectively, whereas CYP2D2 has phenylalanine and aspartic acid at the same positions. In reduced carbon monoxide-difference spectroscopic analysis, the substitution of Asp-219 of CYP2D2 by valine markedly increased a peak at 450 nm and concomitantly decreased a peak at 420 nm, while the replacement of Phe-216 of CYP2D2 with leucine gave no observable change. The double substitution of Phe-216 and Asp-219 by leucine and valine, respectively, yielded a typical CYP spectrum. The substitution of Val-219 of CYP2D1 by aspartic acid decreased the CYP content to one-half, whereas the replacement of Leu-216 with phenylalanine did not have any effect. The double substitution of Leu-216 and Val-219 of CYP2D1 by phenylalanine and aspartic acid, respectively, diminished the CYP content by 90%. CYP2D1 catalyzed both 5-MeO-DIPT N-deisopropylation and O-demethylation at relatively low levels, while CYP2D2 catalyzed 5-MeO-DIPT O-demethylation efficiently. The substitution of the amino acid at position 216 substantially increased 5-MeO-DIPT oxidation activities of the two CYP2D enzymes. The replacement of the amino acid at position 219 increased the 5-MeO-DIPT O- and N-dealkylation activities of CYP2D1, whereas it decreased the 5-MeO-DIPT O-demethylation activity of CYP2D2. These results indicate that amino acid residues at positions 216 and 219 have important roles in the enzymatic functions of rat CYP2D1 and CYP2D2.  相似文献   
84.
We found 4-pyridylmethylthio derivative 1 to be very effective in using antiangiogenesis activity to prevent proliferation of HUVECs (Human Umbilical Vein Endothelial Cells), which was induced by vascular endothelial growth factor (VEGF). Compound 1 was equally effective in inhibiting VEGF receptor2 tyrosine kinase (KDR, IC50 = 26 nM). We deduced that the inhibition was the result of binding the catalytic domain of VEGF receptor2 tyrosine kinase in a similar fashion to both phthalazine derivative PTK787 2 and anthranylamide derivative AAL993 3. In this report, we will describe the conformational analyses, from ab initio MO calculation and X-ray crystallographic analyses, of compound 1 and the analogs, which include non-active 9, all in comparison with 2 and 3. The conformation–activity relationships suggest that a nonbonded intramolecular interaction between the sulfur and the carbonyl oxygen of 1 was very important in inhibiting KDR.  相似文献   
85.
The effects of disodium ethane-1-hydroxy-1,1-diphosphonate (EHDP) on the in vitro functions of guinea pig macrophages were studied. A high dose (1 mg/ml) of EHDP inhibited interleukin 1 (IL 1) production by oil-induced peritoneal macrophages stimulated with muramyl dipeptide (MDP), lipopolysaccharide (LPS), phorbol myristic acetate (PMA), heat-aggregated IgG2 or calcium ionophore A23187. On the other hand, low doses (less than 0.125 mg/ml) of EHDP augmented the MDP induced IL 1 production by macrophages. This biphasic effect was also observed when macrophages were exposed to EHDP at 37 C for 24 hr and then stimulated with IL 1 inducers. Superoxide anion generation induced by formyl peptide or PMA was not affected by preincubation of the macrophages with doses of EHDP up to 1 mg/ml. Adherence and spreading of macrophages was inhibited by EHDP in a dose dependent manner without affecting cell viability. These results demonstrated that EHDP acted on macrophages directly and modulated IL 1 production in vitro.  相似文献   
86.
87.
Lysophosphatidic acids (LPAs) are known to be normal constituents of mammalian serum, and they mimic some biological effects of the serum. We previously reported that lysophospholipase D (LPLD) was involved in the accumulation of LPAs in incubated rat plasma and serum. In this study we detected, by gas-liquid chromatography, various molecular species of LPA in follicular fluids collected from women programmed for in vitro fertilization. When the follicular fluid was incubated at 37 degrees C for 48 h, persistent increases in the amounts of LPAs were observed concomitant with decreases in the amounts of the corresponding lysophosphatidylcholines (LPCs), although the concentrations of saturated LPCs increased in the first 6 h of incubation. These results suggest that human follicular fluid has LPLD activity, and this was confirmed by experiments with follicular fluids mixed with an exogenous radioactive LPC. The LPLD showed preference for unsaturated over saturated LPCs, similar to plasma LPLD, indicating that it originated from the circulation.  相似文献   
88.
89.
The regeneration of lens tissue from the iris of newts has become a classical model of developmental plasticity, although little is known about the corresponding plasticity of the mammalian iris. We here demonstrate and characterize multipotent cells within the iris pigment epithelium (IPE) of postnatal and adult rodents. Acutely-isolated IPE cells were morphologically homogeneous and highly pigmented, but some produced neurospheres which expressed markers characteristic of neural stem/progenitor cells. Stem/progenitor cell markers were also expressed in the IPE in vivo both neonatally and into adulthood. Inner and outer IPE layers differentially expressed Nestin (Nes) in a manner suggesting that they respectively shared origins with neural retina (NR) and pigmented epithelial (RPE) layers. Transgenic marking enabled the enrichment of Nes-expressing IPE cells ex vivo, revealing a pronounced capacity to form neurospheres and differentiate into photoreceptor cells. IPE cells that did not express Nes were less able to form neurospheres, but a subset initiated the expression of pan-neural markers in primary adherent culture. These data collectively suggest that discrete populations of highly-pigmented cells with heterogeneous developmental potencies exist postnatally within the IPE, and that some of them are able to differentiate into multiple neuronal cell types.  相似文献   
90.
The behavior of marker proteins of glial cells [alpha-enolase, beta-S100 protein, and glial fibrillary acidic protein (GFAP)] was investigated quantitatively by using enzyme immunoassay systems during the development of cerebellar hypoplasia in jaundiced Gunn rats. A neuronal marker protein, gamma-enolase, was also measured as a reference. At postnatal day 8 corresponding to the early stage of cerebellar damage, the amount of beta-S100 on a protein basis was significantly higher in jaundiced homozygotes (jj) than in control nonjaundiced heterozygotes (j+), whereas no differences in alpha- and gamma-enolases and GFAP were observed between the two groups of rats. At days 15 and 30, which correspond, respectively, to the advanced and late stages of cerebellar damage, the three glial proteins, especially GFAP, were higher and the neuronal protein was lower in the jj rat cerebellum than in the control. These results are consistent with the reported histological observations that neuronal cells are vulnerable and damaged by bilirubin, whereas glial cells seem to be less sensitive. On the other hand, the amounts of beta-S100 and alpha-enolase per cerebellum were significantly lower in jj rats at days 15 and 30, as in the case of gamma-enolase, whereas that of GFAP remained at the same level as the control at day 15 and showed a slight but significant decrease at day 30. The possibility is suggested that beta-S100 and GFAP may be available as biochemical indicators of glial cells, especially in the early and advanced stages of cerebellar damage, respectively, but that alpha-enolase is less available.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号