首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   26篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   4篇
  2015年   6篇
  2014年   16篇
  2013年   14篇
  2012年   17篇
  2011年   14篇
  2010年   12篇
  2009年   17篇
  2008年   9篇
  2007年   12篇
  2006年   16篇
  2005年   14篇
  2004年   9篇
  2003年   8篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有243条查询结果,搜索用时 31 毫秒
161.
Dendritic cells (DCs) have a key role in both the generation of the immune response and the induction of tolerance to self-Ags. In this work, the possible role of P-selectin glycoprotein ligand 1 (PSGL-1) on the tolerogenic activity of human DCs was explored. We found that the engagement of PSGL-1 by P-selectin on DCs induced the expression of c-Fos, IDO, IL-10, and TGF-beta genes. Remarkably, stimulation of DCs through PSGL-1 with P-selectin enhanced their capability to generate CD4(+)CD25(+)Foxp3(+) regulatory T cells, which expressed high levels of TGF-beta1 mRNA, synthesized IL-10, and suppressed the proliferation of autologous CD4(+)CD25(-) T cells. Accordingly, we found that DCs from PSGL-1(-/-) mice expressed higher levels of MHC class II molecules, and exhibited an enhanced immunogenicity compared with wild-type mice. In addition, the percentage of CD4(+)CD25(+)Foxp3(+) regulatory T cells in the thymus of PSGL-1-deficient animals was significantly reduced. Our data reveal an unexpected role of PSGL-1 on the tolerogenic function of DCs, and the regulation of the immune response.  相似文献   
162.
Domoic acid (DA), the neurotoxin produced by diatoms such as Pseudo-nitzschia multiseries is water-soluble and can bioaccumulate, causing mass death of birds and marine mammals worldwide. Humans eating contaminated shellfish most commonly suffer from memory loss but mortalities have been recorded. The fate of particulate and dissolved DA released from the cells or added as standards was studied when incubated with different bacterial abundances, copepod faecal pellets, mussel pseudo-faeces and bottom sediment. Strains of P. multiseries from Canada and Brazil were grown in non-axenic continuous monocultures with different nutrient conditions, or in a follow-up mesocosm experiment. Incubation lasted up to 75 days in the dark under quiescent conditions after the cells had been killed. Release of DA from decaying cells did not depend on bacterial abundance when the bacterial source was cultures of P. multiseries, and the dissolved toxin was stable with bacteria from P. multiseries cultures (at least 20 days with 1× or 4× bacterial concentration), or with a naturally occurring density of bacteria from surface waters of a known P. multiseries bloom area (35 days). However, four-fold concentration of the natural bacterial consortium from the bloom site reduced the onset of DA degradation to 16 days. Thus, this study suggests that when testing toxin degradation by bacteria, it is important to use bacterial consortia from known bloom areas of Pseudo-nitzschia. Copepod faecal pellets did not affect DA degradation, whereas the presence of mussel pseudo-faeces and bottom sediment rapidly removed most of the toxin. We believe that the rapid removal of DA in the two latter treatments was due to higher bacterial abundance and the presence of enzymes from the mussels and/or associated bacteria that are important for the degradation process. The mechanisms underlying the observed effects on DA degradation with mussel pseudo-faeces and sediment require further research, but suggest interesting possibilities as a potential future mitigation technique.  相似文献   
163.
Aims The plant–herbivore interaction is one of the most fundamental interactions in nature. Plants are sessile organisms, and consequently rely on particular strategies to avoid or reduce the negative impact of herbivory. Here, we aimed to determine the defense strategies against insect herbivores in the creeping invasive plantAlternanthera philoxeroides.  相似文献   
164.
165.
166.
Advances in DNA extraction and next‐generation sequencing have made a vast number of historical herbarium specimens available for genomic investigation. These specimens contain not only genomic information from the individual plants themselves, but also from associated microorganisms such as bacteria and fungi. These microorganisms may have colonized the living plant (e.g., pathogens or host‐associated commensal taxa) or may result from postmortem colonization that may include decomposition processes or contamination during sample handling. Here we characterize the metagenomic profile from shotgun sequencing data from herbarium specimens of two widespread plant species (Ambrosia artemisiifolia and Arabidopsis thaliana) collected up to 180 years ago. We used blast searching in combination with megan and were able to infer the metagenomic community even from the oldest herbarium sample. Through comparison with contemporary plant collections, we identify three microbial species that are nearly exclusive to herbarium specimens, including the fungus Alternaria alternata, which can comprise up to 7% of the total sequencing reads. This species probably colonizes the herbarium specimens during preparation for mounting or during storage. By removing the probable contaminating taxa, we observe a temporal shift in the metagenomic composition of the invasive weed Am. artemisiifolia. Our findings demonstrate that it is generally possible to use herbarium specimens for metagenomic analyses, but that the results should be treated with caution, as some of the identified species may be herbarium contaminants rather than representing the natural metagenomic community of the host plant.  相似文献   
167.
Discrepancies exist regarding the involvement of cellular inflammation and apoptosis in the muscle dysfunction of chronic obstructive pulmonary disease (COPD) patients with preserved body composition. We explored whether levels of inflammatory cells and apoptosis were increased in both respiratory and limb muscles of COPD patients without nutritional abnormalities. In the vastus lateralis, external intercostals, and diaphragms of severe and moderate COPD patients with normal body composition, and in healthy subjects, intramuscular leukocytes and macrophage levels were determined (immunohistochemistry). Muscle structure was also evaluated. In the diaphragm and vastus lateralis of severe and moderate COPD patients and controls, apoptotic nuclei were explored using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, electron microscopy, and caspase-3 expression. In COPD patients compared with controls, diaphragm and intercostal levels of inflammatory cells were extremely low and not significantly different. However, in the vastus lateralis of the severe patients, inflammatory cell counts, although also very low, were significantly greater. In those patients, TUNEL-positive nuclei levels were also significantly greater in diaphragms and vastus lateralis. A significant inverse relationship was found between quadriceps TUNEL-positive nuclei levels and muscle force. Ultrastructural apoptotic nuclei revealed no differences in respiratory or limb muscles between COPD patients and controls. Muscle caspase-3 expression did not differ between patients and controls. In severe COPD patients with preserved body composition, while increased apoptotic nuclei seems to be a contributor to their muscle dysfunction, cellular inflammation does not. The increased numbers of TUNEL-positive nuclei in their muscles suggest that they may also be exposed to a continuous repair/remodeling process.  相似文献   
168.

Background

There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42).

Methods/Principal Findings

The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups.

Conclusions/Significance

As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS.  相似文献   
169.
Conventional therapy to treat hypertension often involves arterial vasodilation. Decrease of blood pressure by vasodilators is normally associated with adverse effects because of their low vascular selectivity. This is of interest to develop new molecules with potential for clinical use and fewer side effects. Recently, a new bioactive compound of the N-acylhydrazone class, LASSBio-294, was shown to produce a cardioinotropic effect and vasodilation. In this report, new derivatives of LASSBio-294 were designed and tested on the contractile response of vascular smooth muscle from Wistar rats. Phenylephrine-induced contracture in the aorta was inhibited by the derivatives LASSBio-785 and LASSBio-788. The concentrations necessary to cause 50% reduction of the maximal vascular response (IC50) were 10.2 +/- 0.5 and 67.9 +/- 6.5 microM. Vasodilation induced by both derivatives is likely to be mediated by a direct effect on smooth muscle because it was not dependent on the integrity of vascular endothelium. LASSBio-785 was seven times more potent than the reference compound LASSBio-294 (IC50 = 74 microM) in producing an endothelium-independent vasodilator effect.  相似文献   
170.
A series of phthalimide acid derivatives was synthesized and evaluated as leukotriene D(4) receptor antagonists. The tetrazolephthalimide LASSBio 552 (7) was shown to be able to inhibit the contractile activity induced by 100 nM of LTD(4) in guinea-pig tracheal strips with an IC(50) = 31.2 microM. In addition, LASSBio 552 (7) has been showed to present a better efficacy than zafirlukast (1) used as standard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号