首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   6篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2015年   5篇
  2014年   3篇
  2013年   6篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1986年   2篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
51.
Due to the increasing number of heart valve diseases, there is an urgent clinical need for off-the-shelf tissue engineered heart valves. While significant progress has been made toward improving the design and performance of both mechanical and tissue engineered heart valves (TEHVs), a human implantable, functional, and viable TEHV has remained elusive. In animal studies so far, the implanted TEHVs have failed to survive more than a few months after transplantation due to insufficient mechanical properties. Therefore, the success of future heart valve tissue engineering approaches depends on the ability of the TEHV to mimic and maintain the functional and mechanical properties of the native heart valves. However, aside from some tensile quasistatic data and flexural or bending properties, detailed mechanical properties such as dynamic fatigue, creep behavior, and viscoelastic properties of heart valves are still poorly understood. The need for better understanding and more detailed characterization of mechanical properties of tissue engineered, as well as native heart valve constructs is thus evident. In the current review we aim to present an overview of the current understanding of the mechanical properties of human and common animal model heart valves. The relevant data on both native and tissue engineered heart valve constructs have been compiled and analyzed to help in defining the target ranges for mechanical properties of TEHV constructs, particularly for the aortic and the pulmonary valves. We conclude with a summary of perspectives on the future work on better understanding of the mechanical properties of TEHV constructs.  相似文献   
52.
Bangladesh has been a signatory to the Convention on Biological Diversity (CBD) although implementation of the convention has been poor. We independently assessed the extent to which the program of work (POW) of the CBD has been implemented in Bangladesh by carrying out workshops involving local communities, conservation organizations, universities, and government departments involved in forest conservation. Our analyses indicate that there is little or no understanding of the ecosystem approach that is central to the CBD; forestry practices remain primitive and largely ineffective; forest destruction continues at high rates; restoration of degraded forests are minimal; protected areas are small and ineffective; indigenous peoples’ rights are nominal and are outside any legislation; threats to species have been identified, but little is being done to reduce threats; there is no work on pollution and its mitigation; some work has been done to adapt to climate change; the institutional environment does not enable effective implementation of the ecosystem approach; laws and policies are ineffective; institutional capacity is poor; government will is limited or totally lacking; and knowledge base remains poor, although reporting has improved and various strategic plans have been formulated but never implemented. Thus, the implementation of CBD in Bangladesh requires systemic changes in policy at the institutional levels as well as complementary changes in attitudes and avenues of alternate income generation.  相似文献   
53.
Abstract Vibrio cholerae , recognized as the causative agent of epidemic cholera, was isolated from healthy professional divers and from water samples collected at dive sites in the United States, Ukraine and Russia. Swabs of nose, ear and throat of divers and their tank regulators, i.e. the divers and their diving gear, were taken before and after routine dives. Blood samples were collected before and 30–60 days after each dive to measure IgG and IgA titers against the whole cell antigen of V. cholerae O1. Nine strains of V. cholerae O1 and nine strains of V. cholerae non-O1 were isolated during this study. These isolates were identified by conventional biochemical tests and indirect fluorescent antibody staining methods, using fluorescein isothiocyanate-labeled monoclonal antibody, COLTA, prepared against the 'A' antigenic factor of the lipopolysaccharide of V. cholerae O1, and serotyped by slide agglutination. Seven of the nine strains of V. cholerae O1 isolated and successfully cultured during the studies, were toxigenic by enzyme-linked immunosorbent assay and polymerase chain reaction. Analyses of IgG and IgA antibodies of the divers showed that most of the divers had prior exposure to V. cholerae O1. V. cholerae serotype non-O1 strains isolated during the study were found to be non-toxigenic.  相似文献   
54.
55.
After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.  相似文献   
56.
57.
Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy.Cell death by apoptosis is a natural barrier to cancer development, as it limits uncontrolled proliferation driven by oncogenes.1 Chemotherapeutic agents that target apoptosis have been successful in anti-cancer therapy. However, cancer cells, especially cancer stem cells, often evolve multiple mechanisms to circumvent growth suppression by apoptosis.2 This resistance to apoptosis is a major challenge for many chemotherapeutic agents. Targeting other non-apoptotic cell death pathways is an attractive therapeutic alternative.A growing number of recent studies show that there are distinct genetic programmed cell death modes other than apoptosis.3 Necroptosis is mediated by receptor interacting protein kinase 3 (RIPK3).4 In the presence of caspase inhibition and cellular inhibitor of apoptosis proteins (cIAPs) depletion, tumor necrosis factor (TNF) receptor 1 triggers a signaling reaction that culminates in binding of RIPK3 with its upstream activator RIPK1 through the RIP homotypic interaction motif (RHIM).4 RIPK1 and RIPK3 phosphorylation stabilizes this complex and promotes its conversion to an amyloid-like filamentous structure termed the necrosome.5 Once activated, RIPK3 recruits its substrate mixed lineage kinase domain-like (MLKL).6 Phosphorylated MLKL forms oligomers that translocate to intracellular membranes and the plasma membrane, which eventually leads to membrane rupture.7, 8, 9, 10In addition to phosphorylation, RIPK1 and RIPK3 are also tightly regulated by ubiquitination, a process mediated by the E3 ligases cIAP1, cIAP2, and the linear ubiquitin chain assembly complex.11 The ubiquitin chains on RIPK1 act as a scaffold to activate nuclear factor-κB (NF-κB) and mitogen-activated protein kinase pathways and inhibit formation of the necrosome. As such, depletion of cIAP1/2 by second mitochondria-derived activator of caspase (Smac) mimetics or removal of the ubiquitin chains by the de-ubiquitinating enzyme cylindromatosis (CYLD) promotes necroptosis.12, 13, 14, 15 In addition, RIPK1 and RIPK3 are cleaved and inactivated by caspase 8.16, 17, 18 Mice deficient for caspase 8 or FADD, an essential adaptor protein of caspase 8, suffer from embryonic lethality due to extensive RIPK1- or RIPK3-dependent necroptosis.19, 20, 21 Hence, caspase inhibition and IAP depletion are key priming signals for necroptosis.The physiological functions of RIPK1 and RIPK3 have been extensively investigated in infectious and sterile inflammatory diseases.4, 22 By contrast, their roles in cancer cells'' response to chemotherapeutics are poorly understood. Here we show that RIPK1 and RIPK3 expression is significantly decreased in human colon cancer tissues, suggesting that suppression of RIPK1 or RIPK3 expression is advantageous for cancer growth. However, the loss of RIPK1 and RIPK3 expression in colon cancer was not due to epigenetic DNA modification. Interestingly, RIPK1 and RIPK3 expression in colon cancer cells is reduced by hypoxia, a hallmark of solid tumor. We found that chemotherapeutic agents did not effectively elicit RIPK1/RIPK3-dependent necroptosis in colon cancer cells. Moreover, caspase inhibition and Smac mimetics, which are potent sensitizers for necroptosis, also did not enhance chemotherapeutic agent-induced cell death. These results show that traditional chemotherapeutic agents are not strong inducers of classical necroptosis in colon cancers and suggest that development of pathway-specific drugs is needed to harness the power of necroptosis in anti-cancer therapy.  相似文献   
58.

Background

Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements.

Results

For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases.

Conclusions

The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.  相似文献   
59.
The inhibitory effects of exogenous melatonin (MEL) on colon oncogenesis were investigated using an azoxymethane (AOM)/dextran sodium sulfate (DSS) rat model. Male F344 rats initiated with a single intraperitoneal injection of AOM (20 mg/kg bw) were promoted by 1% (w/v) DSS in drinking water for 7 days. They were then given 0.4, 2 or 10 ppm MEL in drinking water for 17 weeks. At week 20, the development of colonic adenocarcinoma was significantly inhibited by the administration with MEL dose-dependently. MEL exposure modulated the mitotic and apoptotic indices in the colonic adenocarcinomas that developed and lowered the immunohistochemical expression of nuclear factor kappa B, tumor necrosis factor α, interleukin-1β and STAT3 in the epithelial malignancies. These results may indicate the beneficial effects of MEL on colitis-related colon carcinogenesis and a potential application for inhibiting colorectal cancer development in the inflamed colon.  相似文献   
60.
Renewed interest in arsenic has been shown recently due to its dual nature of being a potent toxin and a drug for treatment of acute promyelocytic leukemia (APL) because of its ability to trigger caspase activation. Here, we found that sodium arsenite (NaAsO(2)) also triggers the signal for activation of Akt and downstream glycogen synthase 3beta (GSK3beta). Such Akt/GSK3beta activation was abrogated completely by wortmannin, an inhibitor of PI-3 kinase, and greatly by pertussis toxin, a G-protein inhibitor. Arsenite-induced Akt phosphorylation also was inhibited by sequestrating membrane cholesterol with beta cyclodextrin. Reducing reagents/reactive oxygen species (ROS) scavengers reduced arsenite-induced Akt phosphorylation and beta cyclodextrin reduced arsenite-mediated ROS production, suggesting that arsenite-induced G-protein/Akt/GSK3beta pathway is membrane raft dependent and redox linked. We also found that a combination of a low concentration (1 microM) of arsenite and wortmannin triggers the signal for caspase activation, whereas neither of these elements alone did so. These results suggested that selective blockade of the arsenite-provoked PI-3 kinase/Akt pathway can promote the arsenite-triggered pathway for caspase activation, and this may open a new study area for wider applications of arsenic as a drug for treating various kinds of leukemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号