首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2799篇
  免费   120篇
  国内免费   1篇
  2920篇
  2023年   30篇
  2022年   50篇
  2021年   71篇
  2020年   51篇
  2019年   54篇
  2018年   90篇
  2017年   62篇
  2016年   111篇
  2015年   122篇
  2014年   134篇
  2013年   216篇
  2012年   240篇
  2011年   208篇
  2010年   135篇
  2009年   127篇
  2008年   137篇
  2007年   133篇
  2006年   108篇
  2005年   86篇
  2004年   75篇
  2003年   76篇
  2002年   42篇
  2001年   48篇
  2000年   35篇
  1999年   27篇
  1998年   17篇
  1997年   16篇
  1996年   18篇
  1995年   13篇
  1994年   9篇
  1992年   25篇
  1991年   19篇
  1990年   22篇
  1989年   17篇
  1988年   24篇
  1987年   18篇
  1986年   22篇
  1985年   23篇
  1984年   19篇
  1983年   24篇
  1982年   12篇
  1981年   13篇
  1979年   18篇
  1978年   9篇
  1977年   12篇
  1974年   12篇
  1973年   7篇
  1972年   18篇
  1971年   12篇
  1969年   10篇
排序方式: 共有2920条查询结果,搜索用时 0 毫秒
71.
Journal of Industrial Microbiology & Biotechnology - Nocardia spp. are catalase positive, aerobic, and non-motile Gram-positive filamentous bacteria. Many Nocarida spp. have been reported as...  相似文献   
72.
Theories in soil biology, such as plant–microbe interactions and microbial cooperation and antagonism, have guided the practice of ecological restoration (ecorestoration). Below‐ground biodiversity (bacteria, fungi, invertebrates, etc.) influences the development of above‐ground biodiversity (vegetation structure). The role of rhizosphere bacteria in plant growth has been largely investigated but the role of phages (bacterial viruses) has received a little attention. Below the ground, phages govern the ecology and evolution of microbial communities by affecting genetic diversity, host fitness, population dynamics, community composition, and nutrient cycling. However, few restoration efforts take into account the interactions between bacteria and phages. Unlike other phages, filamentous phages are highly specific, nonlethal, and influence host fitness in several ways, which make them useful as target bacterial inocula. Also, the ease with which filamentous phages can be genetically manipulated to express a desired peptide to track and control pathogens and contaminants makes them useful in biosensing. Based on ecology and biology of filamentous phages, we developed a hypothesis on the application of phages in environment to derive benefits at different levels of biological organization ranging from individual bacteria to ecosystem for ecorestoration. We examined the potential applications of filamentous phages in improving bacterial inocula to restore vegetation and to monitor changes in habitat during ecorestoration and, based on our results, recommend a reorientation of the existing framework of using microbial inocula for such restoration and monitoring. Because bacterial inocula and biomonitoring tools based on filamentous phages are likely to prove useful in developing cost‐effective methods of restoring vegetation, we propose that filamentous phages be incorporated into nature‐based restoration efforts and that the tripartite relationship between phages, bacteria, and plants be explored further. Possible impacts of filamentous phages on native microflora are discussed and future areas of research are suggested to preclude any potential risks associated with such an approach.  相似文献   
73.
Janus kinase 3 (Jak3) is a non-receptor tyrosine kinase known to be expressed in hematopoietic cells. Studies of whole organ homogenates show that Jak3 is also expressed in the intestines of both human and mice. However, neither its expression nor its function has been defined in intestinal epithelial enterocytes. The present studies demonstrate that functional Jak3 is expressed in human intestinal enterocytes HT-29 Cl-19A and Caco-2 and plays an essential role in the intestinal epithelial wound repair process in response to interleukin 2 (IL-2). Exogenous IL-2 enhanced the wound repair of intestinal enterocytes in a dose-dependent manner. Activation by IL-2 led to rapid tyrosine phosphorylation and redistribution of Jak3. IL-2-stimulated redistribution of Jak3 was inhibited by the Jak3-specific inhibitor WHI-P131. IL-2 also induced Jak3-dependent redistribution of the actin cytoskeleton in migrating cells. In these cells Jak3 interacted with the intestinal and renal epithelial cell-specific cytoskeletal protein villin in an IL-2-dependent manner. Inhibition of Jak3 activation resulted in loss of tyrosine phosphorylation of villin and a significant decrease in wound repair of the intestinal epithelial cells. Previously, we had shown that tyrosine phosphorylation of villin is important for cytoskeletal remodeling and cell migration. The present study demonstrates a novel pathway in intestinal enterocytes in which IL-2 enhances intestinal wound repair through mechanisms involving Jak3 and its interactions with villin.  相似文献   
74.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   
75.
Inositol hexaphosphate (IP6) is a natural constituent found in almost all cereals and legumes. It is known to cause numerous antiangiogenic manifestations. Notwithstanding its great potential, it is underutilized due to the chelation and rapid excretion from the body. Jacalin is another natural constituent obtained from seeds of jackfruit and can target disaccharides overexpressed in tumor cells. The current study was in-quested to develop and evaluate a surface-modified gold nanoparticulate system containing IP6 and jacalin which may maximize the apoptotic effect of IP6 against HCT-15 cell lines. IP6 loaded jacalin-pectin-gold nanoparticles (IJP-GNPs) were developed through reduction followed by incubation method. The developed formulation was tested for various in vitro and in silico studies to investigate its potential. HCT-15 cells when exposed to IJP-GNP resulted in significant apoptotic effects in dose as well as time-dependent manner, as measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, micronucleus, and reactive oxygen species assay. IJP-GNP displayed cell cycle arrest at the G0/G1 phase. To further explore the mechanism of chemoprevention, in silico studies were performed. The docking results revealed that the interactive behavior of IP6, P-GNP, and jacalin could target and inhibit the tumor formation activity, supported by in vitro studies. Taken together, all the findings suggested that IP6 loaded nanoparticles may increase the hope of future drug delivery strategy for targeting colon cancer.  相似文献   
76.
Plant Molecular Biology Reporter - The original version of this article unfortunately contained missing information at author’s affiliations. The affiliation address of the author’s...  相似文献   
77.
78.
79.
Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional ‘single target–single drug’ approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3’-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins.  相似文献   
80.
Oceans cover more than 70% of the Earth’s surface and house a dizzying array of organisms. Mammals, birds, and all manner of fish can be commonly sighted at sea, but insects, the world’s most common animals, seem to be completely absent. Appearances can deceive, however, as 5 species of the ocean skater Halobates live exclusively at the ocean surface. Discovered 200 years ago, these peppercorn-sized insects remain rather mysterious. How do they cope with life at the ocean surface, and why are they the only genus of insects to have taken to the high seas?

Oceans cover over 70% of the earth’s surface and house a dizzying array of organisms, including five species of the peppercorn-sized ocean-skater Halobates, which live exclusively at the ocean surface. How do they cope with life at the ocean surface and why are they the only genus of insects able to conquer the high seas?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号