首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   45篇
  2024年   3篇
  2023年   12篇
  2022年   29篇
  2021年   39篇
  2020年   15篇
  2019年   23篇
  2018年   30篇
  2017年   22篇
  2016年   33篇
  2015年   28篇
  2014年   52篇
  2013年   66篇
  2012年   55篇
  2011年   61篇
  2010年   36篇
  2009年   21篇
  2008年   42篇
  2007年   27篇
  2006年   31篇
  2005年   22篇
  2004年   16篇
  2003年   10篇
  2002年   11篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1973年   1篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
31.
The highly contagious Delta variant of SARS‐CoV‐2 has become a prevalent strain globally and poses a public health challenge around the world. While there has been extensive focus on understanding the amino acid mutations in the Delta variant’s Spike protein, the mutational landscape of the rest of the SARS‐CoV‐2 proteome (25 proteins) remains poorly understood. To this end, we performed a systematic analysis of mutations in all the SARS‐CoV‐2 proteins from nearly 2 million SARS‐CoV‐2 genomes from 176 countries/territories. Six highly prevalent missense mutations in the viral life cycle‐associated Membrane (I82T), Nucleocapsid (R203M, D377Y), NS3 (S26L), and NS7a (V82A, T120I) proteins are almost exclusive to the Delta variant compared to other variants of concern (mean prevalence across genomes: Delta = 99.74%, Alpha = 0.06%, Beta = 0.09%, and Gamma = 0.22%). Furthermore, we find that the Delta variant harbors a more diverse repertoire of mutations across countries compared to the previously dominant Alpha variant. Overall, our study underscores the high diversity of the Delta variant between countries and identifies a list of amino acid mutations in the Delta variant’s proteome for probing the mechanistic basis of pathogenic features such as high viral loads, high transmissibility, and reduced susceptibility against neutralization by vaccines.  相似文献   
32.
Erythrocytes isolated from 131 cases of Non-Insulin Dependent Diabetes Mellitus (NIDDM) were studied for lipid peroxidation, antioxidant defences, and the maximum peroxidisable substrate in the cell membrane. Antioxidant defences are lowered in NIDDM, followed by significant rise in lipid peroxidation products. However, in the erythrocyte membrane, the total polyunsaturated peroxidisable lipids are lower than in normal erythrocytes which may be a causative factor affecting the survival of the cells.  相似文献   
33.
34.
In the present studies, effects of glucose analogue, 2-deoxy-D-glucose (2-DG) on radiation-induced cell cycle perturbations were investigated in human tumor cell lines. In unirradiated cells, the levels of cyclin B1 in G2 phase were significantly higher in both the glioma cell lines as compared to squamous carcinoma cells. Upon irradiation with Co60 gamma-rays (2 Gy), the cyclin B1 levels were reduced in U87 cells, while no significant changes could be observed in other cell lines, which correlated well with the transient G2 delay observed under these conditions by the BrdU pulse chase measurements. 2-DG (5 mM, 2 hr) induced accumulation of cells in the G2 phase and a time-dependent increase in the levels of cyclin B1 in both the glioma cell lines, while significant changes could not be observed in any of the squamous carcinoma cell lines. 2-DG enhanced the cyclin B1 level further in all the cell lines following irradiation, albeit to different extents. Interestingly, an increase in the unscheduled expression of B1 levels in G1 phase 48 hr after irradiation was observed in all the cell lines investigated. 2-DG also increased the levels of cyclin D1 at 24 hr in BMG-1 cell line. These observations imply that 2-DG-induced alterations in the cell cycle progression are partly responsible for its radiomodifying effects.  相似文献   
35.
Botryococcus braunii, a green colonial microalga, is an unusually rich renewable source of hydrocarbons and other chemicals. Hydrocarbons can constitute up to 75% of the dry mass of B. braunii. This review details the various facets of biotechnology of B. braunii, including its microbiology and physiology; production of hydrocarbons and other compounds by the alga; methods of culture; downstream recovery and processing of algal hydrocarbons; and cloning of the algal genes into other microorganisms. B. braunii converts simple inorganic compounds and sunlight to potential hydrocarbon fuels and feedstocks for the chemical industry. Microorganisms such as B. braunii can, in the long run, reduce our dependence on fossil fuels and because of this B. braunii continues to attract much attention.  相似文献   
36.
The striking similarity between observed circular dichroism spectra of nonprolyl homopolymers and that of regular left-handed polyproline II (PII) helices prompted Tiffany and Krimm to propose in 1968 that unordered peptides and unfolded proteins are built of PII segments linked by sharp bends. A large body of experimental evidence, accumulated over the past three decades, provides compelling evidence in support of the original hypothesis of Tiffany and Krimm. Of particular interest are the recent experiments of Shi et al. who find significant PII structure in a short unfolded alanine-based peptide. What is the physical basis for PII helices in peptide and protein unfolded states? The widely accepted view is that favorable chain-solvent hydrogen bonds lead to a preference for dynamical fluctuations about noncooperative PII helices in water. Is this preference simply a consequence of hydrogen bonding or is it a manifestation of a more general trend for unfolded states which are appropriately viewed as chains in a good solvent? The prevalence of closely packed interiors in folded proteins suggests that under conditions that favor folding, water—which is a better solvent for itself than for any polypeptide chain—expels the chain from its midst, thereby maximizing chain packing. Implicit in this view is a complementary idea: under conditions that favor unfolding, chain-solvent interactions are preferred and in a so-called good solvent, chain packing density is minimized. In this work we show that minimization of chain packing density leads to preferred fluctuations for short polyalanyl chains around canonical, noncooperative PII-like conformations. Minimization of chain packing is modeled using a purely repulsive soft-core potential between polypeptide atoms. Details of chain-solvent interactions are ignored. Remarkably, the simple model captures the essential physics behind the preference of short unfolded alanine-based peptides for PII helices. Our results are based on a detailed analysis of the potential energy landscape which determines the system''s structural and thermodynamic preferences. We use the inherent structure formalism of Stillinger and Weber, according to which the energy landscape is partitioned into basins of attraction around local minima. We find that the landscape for the experimentally studied seven-residue alanine-based peptide is dominated by fluctuations about two noncooperative structures: the left-handed polyproline II helix and its symmetry mate.  相似文献   
37.
38.
R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene duplication, we supplemented the information available on recently duplicated maize (Zea mays) R2R3 Myb genes (C1/Pl1 and P1/P2) by cloning and characterizing ZmMyb-IF35 and ZmMyb-IF25. These two genes correspond to the recently expanded P-to-A group of maize R2R3 Myb genes. Although the origins of C1/Pl1 and ZmMyb-IF35/ZmMyb-IF25 are associated with the segmental allotetraploid origin of the maize genome, other gene duplication events also shaped the P-to-A clade. Our analyses indicate that some recently duplicated Myb gene pairs display substantial differences in the numbers of synonymous substitutions that have accumulated in the conserved MYB domain and the divergent C-terminal regions. Thus, differences in the accumulation of substitutions during evolution can explain in part the rapid divergence of C-terminal regions for these proteins in some cases. Contrary to previous studies, we show that the divergent C termini of these R2R3 MYB proteins are subject to purifying selection. Our results provide an in-depth analysis of the sequence divergence for some recently duplicated R2R3 Myb genes, yielding important information on general patterns of evolution for this large family of plant regulatory genes.  相似文献   
39.
Based on the color change of an indicator due to the release of hydrogen ion from a nitrilase-catalyzed reaction, a rapid colorimetric method was established for the enantioselective screening of nitrilase-producing microorganisms. The formation of acids due to the nitrilase-mediated hydrolysis of nitriles causes a drop in the pH, which in turn results in a change of color of the solution (containing indicator) that can be observed visually. The buffer (0.01 M phosphate, pH 7.2) and indicator (Bromothymol blue, 0.01%) were selected in such a way that both have the same affinity for the released protons. The enantioselectivity of nitrilases was estimated by comparing the hydrolysis of (R)-mandelonitrile with that of racemate under the same conditions. The method was used to screen a library of nitrilase-producing microorganisms, isolated in the authors' laboratory for their ability to enantioselectively hydrolyze mandelonitrile to mandelic acid, an important chiral building block.  相似文献   
40.
The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is an important regulator of lipid and glucose homeostasis and cellular differentiation. Studies of many cell types in vitro and in vivo have demonstrated that activation of PPAR gamma can reduce cellular proliferation. We show here that activation of PPAR gamma is sufficient to reduce the proliferation of cultured insulinoma cell lines. We created a model with mice in which the expression of the PPARG gene in beta cells was eliminated (beta gamma KO mice), and these mice were found to have significant islet hyperplasia on a chow diet. Interestingly, the normal expansion of beta-cell mass that occurs in control mice in response to high-fat feeding is markedly blunted in these animals. Despite this alteration in beta-cell mass, no effect on glucose homeostasis in beta gamma KO mice was noted. Additionally, while thiazolidinediones enhanced insulin secretion from cultured wild-type islets, administration of rosiglitazone to insulin-resistant control and beta gamma KO mice revealed that PPAR gamma in beta cells is not required for the antidiabetic actions of these compounds. These data demonstrate a critical physiological role for PPAR gamma function in beta-cell proliferation and also indicate that the mechanisms controlling beta-cell hyperplasia in obesity are different from those that regulate baseline cell mass in the islet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号