首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   551篇
  免费   68篇
  国内免费   1篇
  620篇
  2022年   7篇
  2021年   10篇
  2020年   6篇
  2019年   6篇
  2017年   9篇
  2016年   14篇
  2015年   19篇
  2014年   26篇
  2013年   22篇
  2012年   34篇
  2011年   28篇
  2010年   25篇
  2009年   13篇
  2008年   32篇
  2007年   27篇
  2006年   35篇
  2005年   22篇
  2004年   18篇
  2003年   20篇
  2002年   10篇
  2001年   19篇
  2000年   17篇
  1999年   9篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   8篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   5篇
  1982年   12篇
  1981年   7篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1975年   3篇
  1974年   10篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
31.
The recombinant enzyme lichenase of size 30 kDa was over-expressed using E. coli cells and purified by immobilized metal ion affinity chromatography (IMAC) and size exclusion chromatography. The enzyme displayed high activity towards lichenan and β-glucan. The enzyme showed no activity towards carboxymethyl cellulose, laminarin, galactomannan or glucomannan. Surprisingly, affinity-gel electrophoresis on native-PAGE showed that the enzyme binds only glucomannan and not lichenan or β-glucan or other manno-configured substrates. The enzyme was thermally stable between the temperatures 60°C and 70°C. Presence of Cu2+ ions at a concentration of 5 mM enhanced enzyme activity by 10% but higher concentrations of Cu2+ (>25 mM) showed a sharp fall in the enzyme activity. Heavy metal ions Ni2+, Co2+ and Zn2+ did not affect the activity of the enzyme at low concentrations (0–10 mM) but at higher concentrations (>10 mM), caused a decrease in the enzyme activity. The crystals of lichenase were produced and the 3-dimensional structure of native form of enzyme was previously solved at 1.50 Å. Lichenase displayed (β/α)8-fold a common fold among many glycoside hydrolase families. A cleft was identified that represented the probable location of active site.  相似文献   
32.
The genome sequence of the cyanobacterium Synechocystis sp. PCC6803 revealed four Open reading frame (ORF) encoding putative inositol monophosphatase or inositol monophosphatase-like proteins. One of the ORFs, sll1383, is ∼870 base pair long and has been assigned as a probable myo-inositol 1 (or 4) monophosphatase (IMPase; EC 3.1.3.25). IMPase is the second enzyme in the inositol biosynthesis pathway and catalyses the conversion of L-myo-inositol 1-phosphate to free myo-inositol. The present work describes the functional assignment of ORF sll1383 as myo-inositol 1-phosphate phosphatase (IMPase) through molecular cloning, bacterial overexpression, purification and biochemical characterization of the gene product. Affinity (K m) of the recombinant protein for the substrate DL-myo-inositol 1-phosphate was found to be much higher (0.0034 ± 0.0003 mM) compared to IMPase(s) from other sources but in comparison V max (∼0.033 μmol Pi/min/mg protein) was low. Li+ was found to be an inhibitor (IC50 6.0 mM) of this enzyme, other monovalent metal ions (e.g. Na+, K+ NH4+) having no significant effect on the enzyme activity. Like other IMPase(s), the activity of this enzyme was found to be totally Mg2+ dependent, which can be substituted partially by Mn2+. However, unlike other IMPase(s), the enzyme is optimally active at ∼42°C. To the best of our knowledge, sll1383 encoded IMPase has the highest substrate affinity and specificity amongst the known examples from other prokaryotic sources. A possible application of this recombinant protein in the enzymatic coupled assay of L-myo-inositol 1-phosphate synthase (MIPS) is discussed.  相似文献   
33.
The non-catalytic, family 11 carbohydrate binding module (CtCBM11) belonging to a bifunctional cellulosomal cellulase from Clostridium thermocellum was hyper-expressed in E. coli and functionally characterized. Affinity electrophoresis of CtCBM11 on nondenaturing PAGE containing cellulosic polysaccharides showed binding with β-glucan, lichenan, hydroxyethyl cellulose and carboxymethyl cellulose. In order to elucidate the involvement of conserved aromatic residues Tyr 22, Trp 65 and Tyr 129 in the polysaccharide binding, site-directed mutagenesis was carried out and the residues were changed to alanine. The results of affinity electrophoresis and binding adsorption isotherms showed that of the three mutants Y22A, W65A and Y129A of CtCBM11, two mutants Y22A and Y129A showed no or reduced binding affinity with polysaccharides. These results showed that tyrosine residue 22 and 129 are involved in the polysaccharide binding. These residues are present in the putative binding cleft and play a critical role in the recognition of all the ligands recognized by the protein.  相似文献   
34.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   
35.
MEI-9 is the Drosophila homolog of the human structure-specific DNA endonuclease XPF. Like XPF, MEI-9 functions in nucleotide excision repair and interstrand crosslink repair. MEI-9 is also required to generate meiotic crossovers, in a function thought to be associated with resolution of Holliday junction intermediates. We report here the identification of MUS312, a protein that physically interacts with MEI-9. We show that mutations in mus312 elicit a meiotic phenotype identical to that of mei-9 mutants. A missense mutation in mei-9 that disrupts the MEI-9-MUS312 interaction abolishes the meiotic function of mei-9 but does not affect the DNA repair functions of mei-9. We propose that MUS312 facilitates resolution of meiotic Holliday junction intermediates by MEI-9.  相似文献   
36.
The visceral form of leishmaniasis is the most severe form of the disease and of particular concern due to the emerging problem of HIV/visceral leishmaniasis (VL) co-infection in the tropics. Till date miltefosine, amphotericin B and pentavalent antimony compounds remain the main treatment regimens for leishmaniasis. However, because of severe side effects, there is an urgent need for alternative improved therapies to combat this dreaded disease. In the present study, we have used the murine model of leishmaniasis to evaluate the potential role played by soluble leishmanial antigen (SLA) pulsed-CpG-ODN stimulated dendritic cells (SLA-CpG-DCs) in restricting the intracellular leishmanial growth. We found that mice vaccinated with a single dose of SLA-pulsed DC stimulated by CpG-ODN were protected against a subsequent leishmanial challenge and had a dramatic reduction in parasite burden along with the generation of parasite specific cytotoxic T lymphocytes. Moreover, we demonstrate that the induction of protective immunity conferred by SLA-CpG-DCs depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (CXCL10; IP-10). CXCL10 is directly involved in the generation of a parasite specific CD8+ T cell-mediated immune response. We observed significant reduction of CD8+ T cells in mice depleted of CXCL10 suggesting a direct role of CXCL10 in the generation of CD8+ T cells in SLA-CpG-DCs vaccinated mice. CXCL10 also contributed towards the generation of perforin and granzyme B, two important cytolytic mediators of CD8+ T cells, following SLA-CpG-DCs vaccination. Together, these findings strongly demonstrate that CXCL10 is critical for rendering a protective cellular immunity during SLA-CpG-DC vaccination that confers protection against Leishmania donovani infection.  相似文献   
37.
38.
Phenanthrene derivatives from the orchid Coelogyne cristata   总被引:3,自引:0,他引:3  
Coeloginanthridin, a 9,10-dihydrophenanthrene derivative, and coeloginanthrin, the corresponding phenanthrene analogue, were isolated from the orchid Coelogyne cristata which earlier afforded coelogin (1a) and coeloginin (1b). The structures of coeloginanthridin and coeloginanthrin were established as 3,5,7-trihydroxy-1,2-dimethoxy-9,10-dihydrophenanthrene (2a) and 3,5,7-trihydroxy-1,2-dimethoxyphenanthrene (2c), respectively, from spectral and chemical evidence including the conversion of coeloginanthridin triacetate (2b) to coeloginanthrin triacetate (2d) by dehydrogenation with DDQ. In the light of earlier reports on structurally similar compounds, 2a and 2c may have biological activities of phytoalexins and endogenous plant growth regulators.  相似文献   
39.
The protozoan parasites Trypanosoma, Leishmania and Crithidia, which belong to the order kinetoplastidae, emerge from the most ancient eukaryotic lineages. The diversity found in the life cycle of these organisms must be directed by genetic events, wherein topoisomerases play an important role in cellular processes affecting the topology and organization of intracellular DNA. Topoisomerases are valuable as potential drug targets because they have indispensable function in cell biology. This review summarizes what is known about topoisomerase genes and proteins of kinetoplastid parasites and the roles of these enzymes as targets for therapeutic agents.  相似文献   
40.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号