全文获取类型
收费全文 | 846篇 |
免费 | 47篇 |
专业分类
893篇 |
出版年
2023年 | 3篇 |
2022年 | 14篇 |
2021年 | 19篇 |
2020年 | 15篇 |
2019年 | 10篇 |
2018年 | 20篇 |
2017年 | 17篇 |
2016年 | 33篇 |
2015年 | 42篇 |
2014年 | 55篇 |
2013年 | 51篇 |
2012年 | 85篇 |
2011年 | 63篇 |
2010年 | 48篇 |
2009年 | 39篇 |
2008年 | 52篇 |
2007年 | 51篇 |
2006年 | 45篇 |
2005年 | 37篇 |
2004年 | 40篇 |
2003年 | 19篇 |
2002年 | 23篇 |
2001年 | 11篇 |
2000年 | 8篇 |
1999年 | 6篇 |
1998年 | 7篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 7篇 |
1991年 | 4篇 |
1990年 | 5篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1987年 | 3篇 |
1986年 | 3篇 |
1984年 | 2篇 |
1983年 | 3篇 |
1982年 | 3篇 |
1981年 | 4篇 |
1979年 | 2篇 |
1973年 | 3篇 |
1972年 | 2篇 |
1971年 | 3篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1964年 | 3篇 |
1963年 | 1篇 |
排序方式: 共有893条查询结果,搜索用时 15 毫秒
81.
Swapna Apte-Sengupta Surendra Negi Vincent H. J. Leonard Numan Oezguen Chanakha K. Navaratnarajah Werner Braun Roberto Cattaneo 《The Journal of biological chemistry》2012,287(39):33026-33035
The measles virus (MV) fusion (F) protein trimer executes membrane fusion after receiving a signal elicited by receptor binding to the hemagglutinin (H) tetramer. Where and how this signal is received is understood neither for MV nor for other paramyxoviruses. Because only the prefusion structure of the parainfluenza virus 5 (PIV5) F-trimer is available, to study signal receipt by the MV F-trimer, we generated and energy-refined a homology model. We used two approaches to predict surface residues of the model interacting with other proteins. Both approaches measured interface propensity values for patches of residues. The second approach identified, in addition, individual residues based on the conservation of physical chemical properties among F-proteins. Altogether, about 50 candidate interactive residues were identified. Through iterative cycles of mutagenesis and functional analysis, we characterized six residues that are required specifically for signal transmission; their mutation interferes with fusion, although still allowing efficient F-protein processing and cell surface transport. One residue is located adjacent to the fusion peptide, four line a cavity in the base of the F-trimer head, while the sixth residue is located near this cavity. Hydrophobic interactions in the cavity sustain the fusion process and contacts with H. The cavity is flanked by two different subunits of the F-trimer. Tetrameric H-stalks may be lodged in apposed cavities of two F-trimers. Because these insights are based on a PIV5 homology model, the signal receipt mechanism may be conserved among paramyxoviruses. 相似文献
82.
A Sequence-Specific RNA-Binding Protein Complements Apobec-1 To Edit Apolipoprotein B mRNA 总被引:3,自引:2,他引:3 下载免费PDF全文
The editing of apolipoprotein B (apo-B) mRNA involves the site-specific deamination of cytidine to uracil. The specificity of editing is conferred by an 11-nucleotide mooring sequence located downstream from the editing site. Apobec-1, the catalytic subunit of the editing enzyme, requires additional proteins to edit apo-B mRNA in vitro, but the function of these additional factors, known as complementing activity, is not known. Using RNA affinity chromatography, we show that the complementing activity binds to a 280-nucleotide apo-B RNA in the absence of apobec-1. The activity did not bind to the antisense strand or to an RNA with three mutations in the mooring sequence. The eluate from the wild-type RNA column contained a 65-kDa protein that UV cross-linked to apo-B mRNA but not to the triple-mutant RNA. This protein was not detected in the eluates from the mutant or the antisense RNA columns. Introduction of the mooring sequence into luciferase RNA induced cross-linking of the 65-kDa protein. A 65-kDa protein that interacted with apobec-1 was also detected by far-Western analysis in the eluate from the wild-type RNA column but not from the mutant RNA column. For purification, proteins were precleared on the mutant RNA column prior to chromatography on the wild-type RNA column. Silver staining of the affinity-purified fraction detected a single prominent protein of 65 kDa. Our results suggest that the complementing activity may function as the RNA-binding subunit of the holoenzyme. 相似文献
83.
Anuradha Seshadri Badrinath Dubey Michael H. W. Weber Umesh Varshney 《Molecular microbiology》2009,72(3):795-808
Ribosomal RNA (rRNA) contains a number of modified nucleosides in functionally important regions including the intersubunit bridge regions. As the activity of ribosome recycling factor (RRF) in separating the large and the small subunits of the ribosome involves disruption of intersubunit bridges, we investigated the impact of rRNA methylations on ribosome recycling. We show that deficiency of rRNA methylations, especially at positions 1518 and 1519 of 16S rRNA near the interface with the 50S subunit and in the vicinity of the IF3 binding site, adversely affects the efficiency of RRF-mediated ribosome recycling. In addition, we show that a compromise in the RRF activity affords increased initiation with a mutant tRNAfMet wherein the three consecutive G-C base pairs (29 GGG31 :39 CCC41 ), a highly conserved feature of the initiator tRNAs, were mutated to those found in the elongator tRNAMet (29 UCA31 :39 ψGA41 ). This observation has allowed us to uncover a new role of RRF as a factor that contributes to fidelity of initiator tRNA selection on the ribosome. We discuss these and earlier findings to propose that RRF plays a crucial role during all the steps of protein synthesis. 相似文献
84.
R. Kapila M. S. Negi P. This M. Delseny P. S. Srivastava M. Lakshmikumaran 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(7):1123-1129
The 459-bp HindIII (pBN-4) and the 1732-bp Eco RI (pBNE8) fragments from the Brassica nigra genome were cloned and shown to be members of a dispersed repeat family. Of the three major diploid Brassica species, the repeat pBN-4 was found to be highly specific for the B. nigra genome. The family also hybridized to Sinapis arvensis showing that B. nigra had a closer relationship with the S. arvensis genome than with B. oleracea or B. campestris. The clone pBNE8 showed homology to a number of tRNA species indicating that this family of repeats may have originated from a tRNA sequence. The species-specific 459-bp repeat pBN-4 was localized on the B. nigra chromosomes using monosomic addition lines. In addition to the localization of pBN-4, the chromosomal distribution of two other species-specific repeats, pBN34 and pBNBH35 (reported earlier), was studied. The dispersed repeats pBN-4 and pBNBH35 were found to be present on all of the chromosomes, whereas the tandem repeat pBN34 was localized on two chromosomes. 相似文献
85.
Identification of domains in apobec-1 complementation factor required for RNA binding and apolipoprotein-B mRNA editing 总被引:1,自引:0,他引:1 下载免费PDF全文
The C-to-U editing of apolipoprotein-B (apo-B) mRNA is catalyzed by an enzyme complex that recognizes an 11-nt mooring sequence downstream of the editing site. A minimal holoenzyme that edits apo-B mRNA in vitro has been defined. This complex contains apobec-1, the catalytic subunit, and apobec-1 complementation factor (ACF), the RNA-binding subunit that binds to the mooring sequence. Here, we show that ACF binds with high affinity to single-stranded but not double-stranded apo-B mRNA. ACF contains three nonidentical RNA recognition motifs (RRM) and a unique C-terminal auxiliary domain. In many multi-RRM proteins, the RRMs mediate RNA binding and an auxiliary domain functions in protein-protein interactions. Here we show that ACF does not fit this simple model. Based on deletion mutagenesis, the RRMs in ACF are necessary but not sufficient for binding to apo-B mRNA. Amino acids in the pre-RRM region are required for complementing activity and RNA binding, but not for interaction with apobec-1. The C-terminal 196 amino acids are not absolutely essential for function. However, further deletion of an RG-rich region from the auxiliary domain abolished complementing activity, RNA binding, and apobec-1 interaction. The auxiliary domain alone did not bind apobec-1. Although all three RRMs are required for complementing activity and apobec-1 interaction, the individual motifs contribute differently to RNA binding. Point mutations in RRM1 or RRM2 decreased the Kd for apo-B mRNA by two orders of magnitude whereas mutations in RRM3 reduced binding affinity 13-fold. The pairwise expression of RRM1 with RRM2 or RRM3 resulted in moderate affinity binding. 相似文献
86.
A high frequency in vitro shoot bud differentiation and multiple shoot production protocol from hypocotyl segments of 8 to 10-d-old seedlings of cotton
has been developed. Murashige and Skoog (MS) basal medium with Nitsch and Nitsch vitamins was found to be optimal in shoot
regeneration. A combination of 2 mg dm−3 thidiazuron and 0.05 mg dm−3 naphthaleneacetic acid was the most effective for shoot regeneration (76 %) and an average of 10.6 shoots per responding
explant. Combination of the cytokinins benzylaminopurine and kinetin induced better regeneration response than their individual
treatments. Supplementation of the culture medium with ethylene inhibitor silver nitrate and activated charcoal showed beneficial
effects. Optimal rooting was obtained on half-strength MS medium supplemented with 1 mg dm−3 indolebutyric acid and activated charcoal. Scanning electron micrographs of in vitro cultured explants revealed that shoot primordia were formed de novo. 相似文献
87.
Wareed Ahmed Anuradha Gopal Bhat Majety Naga Leelaram Shruti Menon Valakunja Nagaraja 《Nucleic acids research》2013,41(15):7462-7471
Bacterial DNA topoisomerase I (topoI) carries out relaxation of negatively supercoiled DNA through a series of orchestrated steps, DNA binding, cleavage, strand passage and religation. The N-terminal domain (NTD) of the type IA topoisomerases harbor DNA cleavage and religation activities, but the carboxyl terminal domain (CTD) is highly diverse. Most of these enzymes contain a varied number of Zn2+ finger motifs in the CTD. The Zn2+ finger motifs were found to be essential in Escherichia coli topoI but dispensable in the Thermotoga maritima enzyme. Although, the CTD of mycobacterial topoI lacks Zn2+ fingers, it is indispensable for the DNA relaxation activity of the enzyme. The divergent CTD harbors three stretches of basic amino acids needed for the strand passage step of the reaction as demonstrated by a new assay. We also show that the basic amino acids constitute an independent DNA-binding site apart from the NTD and assist the simultaneous binding of two molecules of DNA to the enzyme, as required during the catalytic step. Although the NTD binds to DNA in a site-specific fashion to carry out DNA cleavage and religation, the basic residues in CTD bind to non-scissile DNA in a sequence-independent manner to promote the crucial strand passage step during DNA relaxation. The loss of Zn2+ fingers from the mycobacterial topoI could be associated with Zn2+ export and homeostasis. 相似文献
88.
Sherry R. Jacob Vandana Tyagi Anuradha Agrawal Shyamal K. Chakrabarty Rishi K. Tyagi 《PloS one》2015,10(5)
Food security is a global concern amongst scientists, researchers and policy makers. No country is self-sufficient to address food security issues independently as almost all countries are inter-dependent for availability of plant genetic resources (PGR) in their national crop improvement programmes. Consultative Group of International Agricultural Research (CGIAR; in short CG) centres play an important role in conserving and distributing PGR through their genebanks. CG genebanks assembled the germplasm through collecting missions and acquisition the same from national genebanks of other countries. Using the Genesys Global Portal on Plant Genetic Resources, the World Information and Early Warning System (WIEWS) on Plant Genetic Resources for Food and Agriculture and other relevant databases, we analysed the conservation status of Indian-origin PGR accessions (both cultivated and wild forms possessed by India) in CG genebanks and other national genebanks, including the United States Department of Agriculture (USDA) genebanks, which can be considered as an indicator of Indian contribution to the global germplasm collection. A total of 28,027,770 accessions are being conserved world-wide by 446 organizations represented in Genesys; of these, 3.78% (100,607) are Indian-origin accessions. Similarly, 62,920 Indian-origin accessions (8.73%) have been conserved in CG genebanks which are accessible to the global research community for utilization in their respective crop improvement programmes. A total of 60 genebanks including 11 CG genebanks have deposited 824,625 accessions of PGR in the Svalbard Global Seed Vault (SGSV) as safety duplicates; the average number of accessions deposited by each genebank is 13,744, and amongst them there are 66,339 Indian-origin accessions. In principle, India has contributed 4.85 times the number of germplasm accessions to SGSV, in comparison to the mean value (13,744) of any individual genebank including CG genebanks. More importantly, about 50% of the Indian-origin accessions deposited in SGSV are traditional varieties or landraces with defined traits which form the backbone of any crop gene pool. This paper is also attempting to correlate the global data on Indian-origin germplasm with the national germplasm export profile. The analysis from this paper is discussed with the perspective of possible implications in the access and benefit sharing regime of both the International Treaty on Plant Genetic Resources for Food and Agriculture and the newly enforced Nagoya Protocol under the Convention on Biological Diversity. 相似文献
89.
Rym Chamakh-Ayari Rachel Bras-Gon?alves Narges Bahi-Jaber Elodie Petitdidier Wafa Markikou-Ouni Karim Aoun Javier Moreno Eugenia Carrillo Poonam Salotra Himanshu Kaushal Narender Singh Negi Jorge Arevalo Francesca Falconi-Agapito Angela Privat Maria Cruz Julie Pagniez Gérard-Marie Papierok Faten Bel Haj Rhouma Pilar Torres Jean-Loup Lemesre Mehdi Chenik Amel Meddeb-Garnaoui 《PloS one》2014,9(5)
PSA (Promastigote Surface Antigen) belongs to a family of membrane-bound and secreted proteins present in several Leishmania (L.) species. PSA is recognized by human Th1 cells and provides a high degree of protection in vaccinated mice. We evaluated humoral and cellular immune responses induced by a L. amazonensis PSA protein (LaPSA-38S) produced in a L. tarentolae expression system. This was done in individuals cured of cutaneous leishmaniasis due to L. major (CCLm) or L. braziliensis (CCLb) or visceral leishmaniasis due to L. donovani (CVLd) and in healthy individuals. Healthy individuals were subdivided into immune (HHR-Lm and HHR-Li: Healthy High Responders living in an endemic area for L. major or L. infantum infection) or non immune/naive individuals (HLR: Healthy Low Responders), depending on whether they produce high or low levels of IFN-γ in response to Leishmania soluble antigen. Low levels of total IgG antibodies to LaPSA-38S were detected in sera from the studied groups. Interestingly, LaPSA-38S induced specific and significant levels of IFN-γ, granzyme B and IL-10 in CCLm, HHR-Lm and HHR-Li groups, with HHR-Li group producing TNF-α in more. No significant cytokine response was observed in individuals immune to L. braziliensis or L. donovani infection. Phenotypic analysis showed a significant increase in CD4+ T cells producing IFN-γ after LaPSA-38S stimulation, in CCLm. A high positive correlation was observed between the percentage of IFN-γ-producing CD4+ T cells and the released IFN-γ. We showed that the LaPSA-38S protein was able to induce a mixed Th1 and Th2/Treg cytokine response in individuals with immunity to L. major or L. infantum infection indicating that it may be exploited as a vaccine candidate. We also showed, to our knowledge for the first time, the capacity of Leishmania PSA protein to induce granzyme B production in humans with immunity to L. major and L. infantum infection. 相似文献
90.
Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry. 相似文献