首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   678篇
  免费   47篇
  2024年   1篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   16篇
  2019年   9篇
  2018年   19篇
  2017年   12篇
  2016年   28篇
  2015年   31篇
  2014年   38篇
  2013年   58篇
  2012年   53篇
  2011年   66篇
  2010年   25篇
  2009年   27篇
  2008年   47篇
  2007年   41篇
  2006年   23篇
  2005年   32篇
  2004年   37篇
  2003年   37篇
  2002年   32篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1987年   3篇
  1985年   1篇
  1984年   6篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   3篇
排序方式: 共有725条查询结果,搜索用时 46 毫秒
41.
Individuals with fast nicotine metabolism typically smoke more and thus have a greater risk for smoking-induced diseases. Further, the efficacy of smoking cessation pharmacotherapy is dependent on the rate of nicotine metabolism. Our objective was to use nicotine metabolite ratio (NMR), an established biomarker of nicotine metabolism rate, in a genome-wide association study (GWAS) to identify novel genetic variants influencing nicotine metabolism. A heritability estimate of 0.81 (95% CI 0.70–0.88) was obtained for NMR using monozygotic and dizygotic twins of the FinnTwin cohort. We performed a GWAS in cotinine-verified current smokers of three Finnish cohorts (FinnTwin, Young Finns Study, FINRISK2007), followed by a meta-analysis of 1518 subjects, and annotated the genome-wide significant SNPs with methylation quantitative loci (meQTL) analyses. We detected association on 19q13 with 719 SNPs exceeding genome-wide significance within a 4.2 Mb region. The strongest evidence for association emerged for CYP2A6 (min p = 5.77E-86, in intron 4), the main metabolic enzyme for nicotine. Other interesting genes with genome-wide significant signals included CYP2B6, CYP2A7, EGLN2, and NUMBL. Conditional analyses revealed three independent signals on 19q13, all located within or in the immediate vicinity of CYP2A6. A genetic risk score constructed using the independent signals showed association with smoking quantity (p = 0.0019) in two independent Finnish samples. Our meQTL results showed that methylation values of 16 CpG sites within the region are affected by genotypes of the genome-wide significant SNPs, and according to causal inference test, for some of the SNPs the effect on NMR is mediated through methylation. To our knowledge, this is the first GWAS on NMR. Our results enclose three independent novel signals on 19q13.2. The detected CYP2A6 variants explain a strikingly large fraction of variance (up to 31%) in NMR in these study samples. Further, we provide evidence for plausible epigenetic mechanisms influencing NMR.  相似文献   
42.
The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.  相似文献   
43.
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.  相似文献   
44.

Introduction

The microeconomic impact of surgery for congenital heart disease is unexplored, particularly in resource limited environments. We sought to understand the direct and indirect costs related to congenital heart surgery and its impact on Indian households from a family perspective.

Methods

Baseline and first follow-up data of 644 consecutive children admitted for surgery for congenital heart disease (March 2013 – July 2014) in a tertiary referral hospital in Central Kerala, South India was collected prospectivelyfrom parents through questionnaires using a semi-structured interview schedule.

Results

The median age was 8.2 months (IQR: 3.0– 36.0 months). Most families belonged to upper middle (43.0%) and lower middle (35.7%) socioeconomic class. Only 3.9% of families had some form of health insurance. The median expense for the admission and surgery was INR 201898 (IQR: 163287–266139) [I$ 11989 (IQR: 9696–15804)], which was 0.93 (IQR: 0.52–1.49) times the annual family income of affected patients. Median loss of man-days was 35 (IQR: 24–50) and job-days was 15 (IQR: 11–24). Surgical risk category and hospital stay duration significantly predicted higher costs. One in two families reported overwhelming to high financial stress during admission period for surgery. Approximately half of the families borrowed money during the follow up period after surgery.

Conclusion

Surgery for congenital heart disease results in significant financial burden for majority of families studied. Efforts should be directed at further reductions in treatment costs without compromising the quality of care together with generating financial support for affected families.  相似文献   
45.
46.

Background

The cause of isolated gonadotropin-independent precocious puberty (PP) with an ovarian cyst is unknown in the majority of cases. Here, we describe 11 new cases of peripheral PP and, based on phenotypes observed in mouse models, we tested the hypothesis that mutations in the GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX may be associated with this phenotype.

Methodology/Principal Findings

11 girls with gonadotropin-independent PP were included in this study. Three girls were seen for a history of prenatal ovarian cyst, 6 girls for breast development, and 2 girls for vaginal bleeding. With one exception, all girls were seen before 8 years of age. In 8 cases, an ovarian cyst was detected, and in one case, suspected. One other case has polycystic ovaries, and the remaining case was referred for vaginal bleeding. Four patients had a familial history of ovarian anomalies and/or infertility. Mutations in the coding sequences of the candidate genes GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX were not observed.

Conclusions/Significance

Ovarian PP shows markedly different clinical features from central PP. Our data suggest that mutations in the GNAS1, NR5A1, LHCGR, FSHR StAR, DMRT4 and NOBOX genes are not responsible for ovarian PP. Further research, including the identification of familial cases, is needed to understand the etiology of ovarian PP.  相似文献   
47.
High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.  相似文献   
48.
Acceleration of flowering would be beneficial for breeding trees with a long juvenile phase; conversely, inhibition of flowering would prevent the spread of transgenes from the genetically modified trees. We have previously isolated and characterized several MADS genes from silver birch ( Betula pendula Roth). In this study, we investigated the more detailed function of one of them, BpMADS4 , a member of the APETALA1/FRUITFULL group of MADS genes. The expression of BpMADS4 starts at very early stage of the male and female inflorescence development and the activity is high in the apex of the developing inflorescence. Later, some expression is detected in the bracts and in the flower initials. Ectopic expression of BpMADS4 accelerates flowering dramatically in normally flowering clones and also in the early-flowering birch clone, in which the earliest line flowered about 11 days after rooting, when the saplings were only 3 cm high. The birches transformed with the BpMADS4 antisense construct showed remarkable delay in flowering and the number of flowering individuals was reduced. Two of the transformed lines did not show any signs of flower development during our 2-year study, whereas all the control plants formed inflorescences within 107 days. Our results show that BpMADS4 has a critical role in the initiation of birch inflorescence development and that BpMADS4 seems to be involved in the transition from vegetative to reproductive development. Therefore, BpMADS4 provides a promising tool for the genetic enhancement of forest trees.  相似文献   
49.
CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号