首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   80篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   4篇
  2018年   13篇
  2017年   16篇
  2016年   23篇
  2015年   35篇
  2014年   46篇
  2013年   36篇
  2012年   48篇
  2011年   40篇
  2010年   39篇
  2009年   14篇
  2008年   38篇
  2007年   33篇
  2006年   36篇
  2005年   29篇
  2004年   33篇
  2003年   20篇
  2002年   25篇
  2001年   15篇
  2000年   11篇
  1999年   14篇
  1998年   11篇
  1997年   10篇
  1996年   5篇
  1995年   7篇
  1994年   9篇
  1992年   5篇
  1991年   10篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   17篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
  1968年   3篇
  1967年   4篇
  1966年   3篇
排序方式: 共有777条查询结果,搜索用时 15 毫秒
71.
72.
In experimental animals, bradykinin type-1 receptors (BK-1Rs) are induced during inflammation and ischemia, and, by exerting either cardioprotective or cardiotoxic effects, they may contribute to the pathogenesis of heart failure. Nothing is known about the expression of BK-1Rs in human heart failure. Human heart tissue was obtained from excised hearts of patients undergoing cardiac transplantation (n = 13), due to idiopathic dilated cardiomyopathy (IDC; n = 7) or to coronary heart disease (CHD; n = 6), and from normal hearts (n = 6). The expression of BK-1Rs was analyzed by means of competitive RT-PCR, Western blot analysis, and immunohistochemistry. Expression of BK-1R mRNA was increased in both IDC (2.8-fold) and CHD (2.1-fold) hearts compared with normal hearts. The observed changes were verified at the protein level. Expression of BK-1Rs in failing hearts localized to the endothelium of intramyocardial coronary vessels and correlated with an increased expression of TNF-alpha in the vessel wall. Treatment of human coronary artery endothelial cells with TNF-alpha increases their BK-1R expression. These novel results show that BK-1Rs are induced in the endothelium of intramyocardial coronary vessels in failing human hearts and so may participate in the pathogenesis of heart failure.  相似文献   
73.
2-Enoyl-CoA hydratase 2 is the middle part of the mammalian peroxisomal multifunctional enzyme type 2 (MFE-2), which is known to be important in the beta-oxidation of very-long-chain and alpha-methyl-branched fatty acids as well as in the synthesis of bile acids. Here, we present the crystal structure of the hydratase 2 from the human MFE-2 to 3A resolution. The three-dimensional structure resembles the recently solved crystal structure of hydratase 2 from the yeast, Candida tropicalis, MFE-2 having a two-domain subunit structure with a C-domain complete hot-dog fold housing the active site, and an N-domain incomplete hot-dog fold housing the cavity for the aliphatic acyl part of the substrate molecule. The ability of human hydratase 2 to utilize such bulky compounds which are not physiological substrates for the fungal ortholog, e.g. CoA esters of C26 fatty acids, pristanic acid and di/trihydroxycholestanoic acids, is explained by a large hydrophobic cavity formed upon the movements of the extremely mobile loops I-III in the N-domain. In the unliganded form of human hydratase 2, however, the loop I blocks the entrance of fatty enoyl-CoAs with chain-length >C8. Therefore, we expect that upon binding of substrates bulkier than C8, the loop I gives way, contemporaneously causing a secondary effect in the CoA-binding pocket and/or active site required for efficient hydration reaction. This structural feature would explain the inactivity of human hydratase 2 towards short-chain substrates. The solved structure is also used as a tool for analyzing the various inactivating mutations, identified among others in MFE-2-deficient patients. Since hydratase 2 is the last functional unit of mammalian MFE-2 whose structure has been solved, the organization of the functional units in the biologically active full-length enzyme is also discussed.  相似文献   
74.
Certain signaling events that promote L-type Ca2+ channel (LCC) phosphorylation, such as beta-adrenergic stimulation or an increased expression of Ca(2+)/calmodulin-dependent protein kinase II, promote mode 2 gating of LCCs. Experimental data suggest the hypothesis that these events increase the likelihood of early after-depolarizations (EADs). We test this hypothesis using an ionic model of the canine ventricular myocyte incorporating stochastic gating of LCCs and ryanodine-sensitive calcium release channels. The model is extended to describe myocyte responses to the beta-adrenergic agonist isoproterenol. Results demonstrate that in the presence of isoproterenol the random opening of a small number of LCCs gating in mode 2 during the plateau phase of the action potential (AP) can trigger EADs. EADs occur randomly, where the likelihood of these events increases as a function of the fraction of LCCs gating in mode 2. Fluctuations of the L-type Ca2+ current during the AP plateau lead to variability in AP duration. Consequently, prolonged APs are occasionally observed and exhibit an increased likelihood of EAD formation. These results suggest a novel stochastic mechanism, whereby phosphorylation-induced changes in LCC gating properties contribute to EAD generation.  相似文献   
75.

Background  

Escherichia coli induces the heat shock response to a temperature up-shift which is connected to the synthesis of a characteristic set of proteins, including ATP dependent chaperones and proteases. Therefore the balance of the nucleotide pool is important for the adaptation and continuous function of the cell. Whereas it has been observed in eukaryotic cells, that the ATP level immediately decreased after the temperature shift, no data are available for E. coli about the adenosine nucleotide levels during the narrow time range of minutes after a temperature up-shift.  相似文献   
76.
Patients with atopic dermatitis (AD) have repeated cutaneous exposure to both environmental allergens and superantigen-producing strains of Staphylococcus aureus. We used a murine model of AD to investigate the role of staphylococcal enterotoxin B (SEB) in the modulation of allergen-induced skin inflammation. Mice were topically exposed to SEB, OVA, a combination of OVA and SEB (OVA/SEB), or PBS. Topical SEB and OVA/SEB exposure induced epidermal accumulation of CD8+ T cells and TCRVbeta8+ cells in contrast to OVA application, which induced a mainly dermal infiltration of CD4+ cells. SEB and OVA/SEB exposure elicited a mixed Th1/Th2-associated cytokine and chemokine expression profile within the skin. Restimulation of lymph node cells from OVA- and OVA/SEB-exposed mice with OVA elicited strong production of IL-13 protein, whereas substantial amounts of IFN-gamma protein were detected after SEB stimulation of cells derived from SEB- or OVA/SEB-exposed mice. Topical SEB treatment elicited vigorous production of SEB-specific IgE and IgG2a Abs and significantly increased the production of OVA-specific IgE and IgG2a Abs. The present study shows that topical exposure to SEB provokes epidermal accumulation of CD8+ T cells, a mixed Th2/Th1 type dermatitis and vigorous production of specific IgE and IgG2a Abs, which can be related to the chronic phase of atopic skin inflammation.  相似文献   
77.
Atopic dermatitis represents a chronically relapsing skin disease with a steadily increasing prevalence of 10-20% in children. Skin-infiltrating T cells, dendritic cells (DC), and mast cells are thought to play a crucial role in its pathogenesis. We report that the expression of the CC chemokine CCL1 (I-309) is significantly and selectively up-regulated in atopic dermatitis in comparison to psoriasis, cutaneous lupus erythematosus, or normal skin. CCL1 serum levels of atopic dermatitis patients are significantly higher than levels in healthy individuals. DC, mast cells, and dermal endothelial cells are abundant sources of CCL1 during atopic skin inflammation and allergen challenge, and Staphylococcus aureus-derived products induce its production. In vitro, binding and cross-linking of IgE on mast cells resulted in a significant up-regulation of this inflammatory chemokine. Its specific receptor, CCR8, is expressed on a small subset of circulating T cells and is abundantly expressed on interstitial DC, Langerhans cells generated in vitro, and their monocytic precursors. Although DC maintain their CCR8+ status during maturation, brief activation of circulating T cells recruits CCR8 from intracytoplamic stores to the cell surface. Moreover, the inflammatory and atopy-associated chemokine CCL1 synergizes with the homeostatic chemokine CXCL12 (SDF-1alpha) resulting in the recruitment of T cell and Langerhans cell-like DC. Taken together, these findings suggest that the axis CCL1-CCR8 links adaptive and innate immune functions that play a role in the initiation and amplification of atopic skin inflammation.  相似文献   
78.
The carbonic anhydrase (CA) gene family has been reported to consist of at least 11 enzymatically active members and a few inactive homologous proteins. Recent analyses of human and mouse databases provided evidence that human and mouse genomes contain genes for still another novel CA isozyme hereby named CA XIII. In the present study, we modeled the structure of human CA XIII. This model revealed a globular molecule with high structural similarity to cytosolic isozymes, CA I, II, and III. Recombinant mouse CA XIII showed catalytic activity similar to those of mitochondrial CA V and cytosolic CA I, with k(cat)/K(m) of 4.3 x 10(7) m(-1) s(-1), and k(cat) of 8.3 x 10(4) s(-1). It is very susceptible to inhibition by sulfonamide and anionic inhibitors, with inhibition constants of 17 nm for acetazolamide, a clinically used sulfonamide, and of 0.25 microm, for cyanate, respectively. Using panels of cDNAs we evaluated human and mouse CA13 gene expression in a number of different tissues. In human tissues, positive signals were identified in the thymus, small intestine, spleen, prostate, ovary, colon, and testis. In mouse, positive tissues included the spleen, lung, kidney, heart, brain, skeletal muscle, and testis. We also investigated the cellular and subcellular localization of CA XIII in human and mouse tissues using an antibody raised against a polypeptide of 14 amino acids common for both human and mouse orthologues. Immunohistochemical staining showed a unique and widespread distribution pattern for CA XIII compared with the other cytosolic CA isozymes. In conclusion, the predicted amino acid sequence, structural model, distribution, and activity data suggest that CA XIII represents a novel enzyme, which may play important physiological roles in several organs.  相似文献   
79.
The putative specific interaction and complex formation by sphingomyelin and cholesterol was investigated. Accordingly, low contents (1 mol % each) of fluorescently labeled derivatives of these lipids, namely 1-palmitoyl-2[10-(pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PyrPC), n-[10-(1-pyrenyl)decanoyl]sphingomyelin (PyrSM), and increasing concentrations of cholesterol (up to 5 mol %), were included in large unilamellar vesicles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dinervonoyl-sn-glycero-3-phosphocholine (DNPC), and the excimer/monomer fluorescence emission ratio (I(e)/I(m)) was measured. In DNPC below the main phase transition, the addition of up to 5 mol % cholesterol reduced I(e)/I(m) significantly. Except for this, cholesterol had only a negligible effect in both matrices and for both probes. We then compared the efficiency of resonance energy transfer from PyrPC and PyrSM to 22-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3beta-ol (NBDchol). An augmenting colocalization of the latter resonance energy transfer pair with temperature was observed in a DMPC matrix below the main phase transition. In contrast, compared to PyrSM the colocalization of PyrPC with NBDchol was more efficient in the longer DNPC matrix. These results could be confirmed using 5,6-dibromo-cholestan-3beta-ol as a collisional quencher for the pyrene-labeled lipids. The results indicate lack of a specific interaction between sphingomyelin and cholesterol, and further imply that hydrophobic mismatch between the lipid constituents could provide the driving force for the cosegregation of sphingomyelin and cholesterol in fluid phospholipid bilayers of thicknesses comparable to those found for biomembranes.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号