首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   56篇
  742篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   6篇
  2019年   5篇
  2018年   13篇
  2017年   17篇
  2016年   26篇
  2015年   38篇
  2014年   45篇
  2013年   36篇
  2012年   49篇
  2011年   38篇
  2010年   41篇
  2009年   17篇
  2008年   42篇
  2007年   36篇
  2006年   39篇
  2005年   30篇
  2004年   38篇
  2003年   20篇
  2002年   21篇
  2001年   11篇
  2000年   10篇
  1999年   13篇
  1998年   11篇
  1997年   10篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1992年   3篇
  1991年   4篇
  1988年   4篇
  1983年   5篇
  1982年   2篇
  1981年   4篇
  1980年   16篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   8篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1971年   2篇
  1969年   2篇
  1968年   3篇
  1967年   4篇
  1966年   3篇
  1965年   2篇
排序方式: 共有742条查询结果,搜索用时 15 毫秒
101.
In the Koitajoki River, Eastern Finland, there exists a self-sustaining population of river-spawning densely rakered whitefish (Coregonus lavaretus pallasi). The population has been classified as near-threatened due to overexploitation and possible hybridization with the lake-spawning sparsely rakered whitefish form. Thus, knowledge of habitat use, movements, and migrations is important for threat assessment and management decisions. We employed conventional tagging and acoustic telemetry to provide information on movements and home range of the Koitajoki River whitefish. We tagged mature individuals at their spawning areas and followed fish movements by tag recoveries and continuously recording fixed receiving stations. The maximum movement distances were 40–50?km both upstream and downstream from the releasing site. There were indications of a clear seasonal migration pattern and spawning-site fidelity; riverine habitats were mainly occupied for spawning and overwintering, while feeding and growth mainly took place in lacustrine environments within several lakes of the river system. Due to their migratory nature, whitefish is vulnerable to environmental disturbances and overfishing in a large geographic area.  相似文献   
102.
Microenvironmental sensitivity of a genotype refers to the ability to buffer against non-specific environmental factors, and it can be quantified by the amount of residual variation in a trait expressed by the genotype's offspring within a (macro)environment. Due to the high degree of polymorphism in behavioral, growth and life-history traits, both farmed and wild salmonids are highly susceptible to microenvironmental variation, yet the heritable basis of this characteristic remains unknown. We estimated the genetic (co)variance of body weight and its residual variation in 2-year-old rainbow trout (Oncorhynchus mykiss) using a multigenerational data of 45,900 individuals from the Finnish national breeding programme. We also tested whether or not microenvironmental sensitivity has been changed as a correlated genetic response when genetic improvement for growth has been practiced over five generations. The animal model analysis revealed the presence of genetic heterogeneity both in body weight and its residual variation. Heritability of residual variation was remarkably lower (0.02) than that for body weight (0.35). However, genetic coefficient of variation was notable in both body weight (14%) and its residual variation (37%), suggesting a substantial potential for selection responses in both traits. Furthermore, a significant negative genetic correlation (-0.16) was found between body weight and its residual variation, i.e., rapidly growing genotypes are also more tolerant to perturbations in microenvironment. The genetic trends showed that fish growth was successfully increased by selective breeding (an average of 6% per generation), whereas no genetic change occurred in residual variation during the same period. The results imply that genetic improvement for body weight does not cause a concomitant increase in microenvironmental sensitivity. For commercial production, however, there may be high potential to simultaneously improve weight gain and increase its uniformity if both criteria are included in a selection index.  相似文献   
103.
Analysis of metabolomics data often goes beyond the task of discovering biomarkers and can be aimed at recovering other important characteristics of observed metabolomic changes. In this paper we explore different methods to detect the presence of distinctive phases in seasonal-responsive changes of metabolomic patterns of Siberian spruce (Picea obovata) during cold acclimation occurred in the period from mid-August to January. Multivariate analysis, specifically orthogonal projection to latent structures discriminant analysis (OPLS-DA), identified time points where the metabolomic patterns underwent substantial modifications as a whole, revealing four distinctive phases during acclimation. This conclusion was re-examined by a univariate analysis consisting of multiple pair-wise comparisons to identify homogeneity intervals for each metabolite. These tests complemented OPLS-DA, clarifying biological interpretation of the classification: about 60% of metabolites found responsive to the cold stress indeed changed at one or more of the time points predicted by OPLS-DA. However, the univariate approach did not support the proposed division of the acclimation period into four phases: less than 10% of metabolites altered during the acclimation had homogeneous levels predicted by OPLS-DA. This demonstrates that coupling the classification found by OPLS-DA and the analysis of dynamics of individual metabolites obtained by pair-wise multicomparisons reveals a more correct characterization of biochemical processes in freezing tolerant trees and leads to interpretations that cannot be deduced by either method alone. The combined analysis can be used in other ‘omics’-studies, where response factors have a causal dependence (like the time in the present work) and pair-wise multicomparisons are not conservative.  相似文献   
104.
Although genome-wide association studies (GWAS) have identified hundreds of complex trait loci, the pathomechanisms of most remain elusive. Studying the genetics of risk factors predisposing to disease is an attractive approach to identify targets for functional studies. Intracranial aneurysms (IA) are rupture-prone pouches at cerebral artery branching sites. IA is a complex disease for which GWAS have identified five loci with strong association and a further 14 loci with suggestive association. To decipher potential underlying disease mechanisms, we tested whether there are IA loci that convey their effect through elevating blood pressure (BP), a strong risk factor of IA. We performed a meta-analysis of four population-based Finnish cohorts (n(FIN) = 11 266) not selected for IA, to assess the association of previously identified IA candidate loci (n = 19) with BP. We defined systolic BP (SBP), diastolic BP, mean arterial pressure, and pulse pressure as quantitative outcome variables. The most significant result was further tested for association in the ICBP-GWAS cohort of 200 000 individuals. We found that the suggestive IA locus at 5q23.2 in PRDM6 was significantly associated with SBP in individuals of European descent (p(FIN) = 3.01E-05, p(ICBP-GWAS) = 0.0007, p(ALL) = 8.13E-07). The risk allele of IA was associated with higher SBP. PRDM6 encodes a protein predominantly expressed in vascular smooth muscle cells. Our study connects a complex disease (IA) locus with a common risk factor for the disease (SBP). We hypothesize that common variants in PRDM6 can contribute to altered vascular wall structure, hence increasing SBP and predisposing to IA. True positive associations often fail to reach genome-wide significance in GWAS. Our findings show that analysis of traditional risk factors as intermediate phenotypes is an effective tool for deciphering hidden heritability. Further, we demonstrate that common disease loci identified in a population isolate may bear wider significance.  相似文献   
105.
Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders.  相似文献   
106.
107.

Background

No previous studies on the effect of genetic factors on the liability to disability retirement have been carried out. The main aim of this study was to investigate the contribution of genetic factors on disability retirement due to the most common medical causes, including depressive disorders.

Methods

The study sample consisted of 24 043 participants (49.7% women) consisting of 11 186 complete same-sex twin pairs including 3519 monozygotic (MZ) and 7667dizygotic (DZ) pairs. Information on retirement events during 1.1.1975–31.12.2004, including disability pensions (DPs) with diagnoses, was obtained from the Finnish nationwide official pension registers. Correlations in liability for MZ and DZ twins and discrete time correlated frailty model were used to investigate the genetic liability to age at disability retirement.

Results

The 30 year cumulative incidence of disability retirement was 20%. Under the best fitting genetic models, the heritability estimate for DPs due to any medical cause was 0.36 (95% CI 0.32–0.40), due to musculoskeletal disorders 0.37 (0.30–0.43), cardiovascular diseases 0.48 (0.39–0.57), mental disorders 0.42 (0.35–0.49) and all other reasons 0.24 (0.17–0.31). The effect of genetic factors decreased with increasing age of retirement. For DP due to depressive disorders, 28% of the variance was explained by environmental factors shared by family members (95% CI 21–36) and 58% of the variance by the age interval specific environmental factors (95% CI 44–71).

Conclusions

A moderate genetic contribution to the variation of disability retirement due to any medical cause was found. The genetic effects appeared to be stronger at younger ages of disability retirement suggesting the increasing influence of environmental factors not shared with family members with increasing age. Familial aggregation in DPs due to depressive disorders was best explained by the common environmental factors and genetic factors were not needed to account for the pattern of familial aggregation.  相似文献   
108.
Hantaviruses are globally important human pathogens that cause hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. Capillary leakage is central to hantaviral diseases, but how it develops, has remained unknown. It has been hypothesized that the pathogenesis of hantavirus infection would be a complex interplay between direct viral effects and immunopathological mechanisms. Both of these were studied in the so far best model of mild hemorrhagic fever with renal syndrome, i.e. cynomolgus macaques infected with wild-type Puumala hantavirus. Viral RNA detected by in situ hybridization and nucleocapsid protein detected by immunohistochemical staining were observed in kidney, spleen and liver tissues. Inflammatory cell infiltrations and tubular damage were found in the kidneys, and these infiltrations contained mainly CD8-type T-cells. Importantly, these results are consistent with those obtained from patients with hantaviral disease, thus showing that the macaque model of hantavirus infection mimics human infection also on the tissue level. Furthermore, both the markers of viral replication and the T-cells appeared to co-localize in the kidneys to the sites of tissue damage, suggesting that these two together might be responsible for the pathogenesis of hantavirus infection.  相似文献   
109.
The aim of this study was to formulate nanoparticles from poly(I)lactide by a modified nanoprecipitation method. The main focus was to study the effect of cosolvent selection on the shape, size, formation efficiency, degree of crystallinity, x-ray diffraction (XRD) reflection pattern, and zeta potential value of the particles. Low-molecular-weight (2000 g/mol) poly(I)lactide was used as a polymer, and sodium cromoglycate was used as a drug. Acetone, ethanol, and methanol were selected as cosolvents. Optimal nanoparticles were achieved with ethanol as a cosolvent, and the formation efficiency of the particles was also higher with ethanol as compared with acetone or methanol. The particles formulated by ethanol and acetone appeared round and smooth, while with methanol they were slightly angular. When the volume of the inner phase was decreased during the nanoprecipitation process, the mean particle size was also decreased with all the solvents, but the particles were more prone to aggregate. The XRD reflection pattern and the degree of crystallinity were more dependent were more prone to aggregate. The XRD reflection pattern and the degree of crystallinity were more dependent on the amount of the solvents in the inner phase than on the properties of the individual cosolvents. The zeta potential values of all the particle batches were slightly negative, which partially explains the increased tendency toward particle aggregation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号