首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   26篇
  371篇
  2023年   3篇
  2022年   7篇
  2021年   13篇
  2020年   3篇
  2019年   8篇
  2018年   15篇
  2017年   6篇
  2016年   11篇
  2015年   18篇
  2014年   20篇
  2013年   19篇
  2012年   31篇
  2011年   30篇
  2010年   17篇
  2009年   20篇
  2008年   18篇
  2007年   17篇
  2006年   15篇
  2005年   16篇
  2004年   18篇
  2003年   11篇
  2002年   15篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
101.
The amygdala is instrumental to a set of brain processes that lead to cocaine consumption, including those that mediate reward and drug craving. This study examined the volumes of the amygdala and hippocampus in cocaine-addicted subjects and matched healthy controls and determined that the amygdala but not the hippocampus was significantly reduced in volume. The right-left amygdala asymmetry in control subjects was absent in the cocaine addicts. Topological analysis of amygdala isosurfaces (population averages) revealed that the isosurface of the cocaine-dependent group undercut the anterior and superior surfaces of the control group, implicating a difference in the corticomedial and basolateral nuclei. In cocaine addicts, amygdala volume did not correlate with any measure of cocaine use. The amygdala symmetry coefficient did correlate with baseline but not cocaine-primed craving. These findings argue for a condition that predisposes the individual to cocaine dependence by affecting the amygdala, or a primary event early in the course of cocaine use.  相似文献   
102.
Currently, oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels are being investigated as an injectable and biodegradable system for tissue engineering applications. In this study, cytotoxicity of each component of the OPF hydrogel formulation and the resulting cross-linked network was examined. Specifically, OPF synthesized with poly(ethylene glycol) (PEG) of different molecular weights (MW), the cross-linking agent [PEG-diacrylate (PEG-DA)], and the redox initiator pair [ammonium persulfate (APS) and ascorbic acid (AA)] were evaluated for cytotoxicity at 2 and 24 h using marrow stromal cells (MSCs) as model cells. The effect of leachable byproducts of OPF hydrogels on cytotoxicity was also investigated. Upon exposure to various concentrations of OPF for 2 h, greater than 50% of the MSCs were viable, regardless of OPF molecular weight or concentration in the media. After 24 h, the MSCs maintained more than 75% viability except for OPF concentrations higher than 25% (w/v). When examining the cross-linking agent, PEG-DA of higher MW (3400) demonstrated significantly higher viability compared to PEG-DA with MW 575 at all concentrations tested. Considering initiators, when MSCs were exposed to AA and APS, as well as the combination of AA and APS, higher viability was observed at lower concentrations. Once cross-linked, the leachable products from the OPF hydrogels had minimal adverse effects on the viability of MSCs (percentage of live cells was higher than 90% regardless of hydrogel types). The results suggest that, after optimization of cross-linking parameters, OPF-based hydrogels hold promise as novel injectable scaffolds or cell carriers in tissue engineering.  相似文献   
103.
Using radiolytic reduction of the oxy-ferrous horseradish peroxidase (HRP) at 77 K, we observed the formation and decay of the putative intermediate, the hydroperoxo-ferric heme complex, often called "Compound 0." This intermediate is common for several different enzyme systems as the precursor of the Compound I (ferryl-oxo pi-cation radical) intermediate. EPR and UV-visible absorption spectra show that protonation of the primary intermediate of radiolytic reduction, the peroxo-ferric complex, to form the hydroperoxo-ferric complex is completed only after annealing at temperatures 150-180 K. After further annealing at 195-205 K, this complex directly transforms to ferric HRP without any observable intervening species. The lack of Compound I formation is explained by inability of the enzyme to deliver the second proton to the distal oxygen atom of hydroperoxide ligand, shown to be necessary for dioxygen bond heterolysis on the "oxidase pathway," which is non-physiological for HRP. Alternatively, the physiological substrate H2O2 brings both protons to the active site of HRP, and Compound I is subsequently formed via rearrangement of the proton from the proximal to the distal oxygen atom of the bound peroxide.  相似文献   
104.
Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.  相似文献   
105.
We synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively. The diffusional exponents, n, during the initial phase of water uptake were independent of the initial Agm-PEGF content and were determined to be 0.66 +/- 0.08, 0.71 +/- 0.07, and 0.60 +/- 0.05 for respective initial Agm-PEGF contents of 0, 100, and 200 mg/g. The heat of fusion of water present in the hydrogels increased from 214 +/- 11 to 254 +/- 4 J/g as the initial Agm-PEGF content increased from 0 to 200 mg/g. The number of adherent smooth muscle cells increased dose-dependently from 15 +/- 6 to 75 +/- 7% of the initial seeding density as the initial Agm-PEGF content increased from 0 to 200 mg/g. These results suggest that the incorporation of the guanidino groups of agmatine into P(PF-co-EG) hydrogels increases the hydrogel free water content and the total water content of the hydrogels and also enhances cell adhesion to the hydrogels.  相似文献   
106.
A new class of diblock copolymers was synthesized from biodegradable poly(lactic acid) and poly(ethylene glycol)minus signmonoamine. These polymers were activated by covalently attaching linkers such as disuccinimidyl tartrate or disuccinimidyl succinate to the hydrophilic polymer chain. The polymers were characterized by (1)H NMR spectroscopy, (13)C NMR spectroscopy and gel permeation chromatography (GPC). These investigations indicated that the polymers were obtained with the correct composition, in high purities, and the expected molecular weight. By using dyes containing primary amine groups such as 5-aminoeosin as model substrates, it was possible to show that the polymers are able to bind such compounds covalently. The diblock copolymers were developed to suppress unspecific protein adsorption and allow the binding of bioactive molecules by instant surface modification. The polymers are intended to be used for tissue engineering applications where surface immobilized cell adhesion peptides or growth factors are needed to control cell behavior.  相似文献   
107.
The accuracy of the Bactec MGIT 960 system for susceptibility testing of 177 clinical isolates of Mycobacterium tuberculosis to first line drugs (isoniazid, rifampicin, ethambutol and streptomycin) was compared with the agar reference method. The sensitivity, the ability to detect resistance, of the MGIT system was 100%, while the specificity, the ability to detect susceptibility, ranged from 98.6% to 100% for all drugs tested.  相似文献   
108.
The purpose of the present investigation was to examine the levels of muscle soreness, muscle damage, and performance output in men with (S, n = 24) or without (A, n = 24) chronic compartment syndrome (CACS)-related symptoms after an intense 10-minute basketball-simulated exercise. Anterior compartment pressure (ICP), muscle soreness perception, creatine kinase (CK) and lactate dehydrogenase (LDH) activities, myoglobin (Mb) concentration, leg strength, and knee joint range of motion (KJRM) were measured at rest, immediately after exercise, and at 24, 48, 72 and 96 hours postexercise (ICP was also measured at 5, 15, and 30 minutes postexercise). ICP, muscle soreness, CK, LDH, and myoglobin increased (p < 0.05) immediately postexercise and during the next 4 days of recovery in both groups. However, S demonstrated a far more pronounced and prolonged (p < 0.05) response than A. Leg strength and KJRM declined (p < 0.05) in both groups, but S demonstrated a greater (p < 0.05) performance deterioration than A. The results of this study suggest that intense basketball-simulated exercise increases ICP, muscle soreness, and indices of muscle damage with a concomitant decrease of performance. Men with CACS-related symptoms and/or history appear more sensitive to muscle damage and soreness than asymptomatic men, probably due to a compromised blood flow to the muscle producing fluid shifts from vascular to interstitial space and further increasing compartment pressure and muscle cell disruption. Results of the present investigation provide evidence to support proper diagnosis, monitoring, care, and preventive measures for symptomatic individuals prior to participation in activities such as basketball.  相似文献   
109.
Oxygen has always been recognized as an essential element of many life forms, initially through its role as a terminal electron acceptor for the energy-generating pathways of oxidative phosphorylation. In 1955, Hayaishi et al. [Mechanism of the pyrocatechase reaction, J. Am. Chem. Soc. 77 (1955) 5450-5451] presented the most important discovery that changed this simplistic view of how Nature uses atmospheric dioxygen. His discovery, the naming and mechanistic understanding of the first "oxygenase" enzyme, has provided a wonderful opportunity and scientific impetus for four decades of researchers. This volume provides an opportunity to recognize the breakthroughs of the "Hayaishi School." Notable have been the prolific contributions of Professor Ishimura et al. [Oxygen and life. Oxygenases, Oxidases and Lipid Mediators, International Congress Series, Elsevier, Amsterdam, 2002], a first-generation Hayaishi product, to characterization of the cytochrome P450 monooxygenases.  相似文献   
110.
INTRODUCTION: High-normal blood pressure (HNBP) seems to be related to increased cardiovascular risk in healthy, normotensive subjects, while essential hypertension is associated with an increase in extracellular matrix content, especially fibrillar collagen type I. The aim of our study was to investigate whether collagen degradation is altered in healthy normotensives with HNBP, and whether this alteration could be related to disturbances in the matrix metalloproteinases plasma concentration, and to compare the findings to those of healthy normotensives with normal blood pressure (NBP) levels, matched for age, sex and BMI. METHODS: Twenty six (14 males, 12 females) healthy, normotensive patients with HNBP, mean age 52 +/- 5 yrs, and BMI 23 +/- 1.5 kg/m(2) (group A), and 24, healthy normotensive patients (13 males, 11 females) with NBP, mean age 53 +/- 6 yrs, and BMI 23.2 +/- 1.4 kg/m(2) (group B), were studied. The two groups were matched for age, sex and BMI. Plasma levels of matrix metalloproteinase-9 (MMP-9) and tissue inhibitors (TIMP-1) and (TIMP-4) were determined by relevant ELISA in the study population. RESULTS: Plasma MMP-9 levels were significantly higher, while TIMP-1 and TIMP-4 levels were significantly lower in group A compared to group B, (MMP-9 579 +/- 147 versus 294 +/- 111 ng/mL, TIMP-1 178 +/- 45 versus 237 +/- 35 ng/mL p < 0.01, and TIMP-4 2.2 +/- 1.4 versus 4.4 +/- 2.1 p < 0.04 respectively). CONCLUSIONS: Our findings suggest that healthy normotensives with high-normal blood pressure have significantly increased MMP-9 and decreased TIMP-1 and TIMP-4 plasma levels compared to healthy normotensives with normal blood pressure. These findings need further investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号