首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15391篇
  免费   1051篇
  国内免费   3篇
  2023年   99篇
  2022年   199篇
  2021年   324篇
  2020年   234篇
  2019年   335篇
  2018年   395篇
  2017年   370篇
  2016年   541篇
  2015年   813篇
  2014年   854篇
  2013年   1078篇
  2012年   1322篇
  2011年   1210篇
  2010年   777篇
  2009年   709篇
  2008年   916篇
  2007年   862篇
  2006年   853篇
  2005年   740篇
  2004年   684篇
  2003年   663篇
  2002年   602篇
  2001年   119篇
  2000年   94篇
  1999年   108篇
  1998年   129篇
  1997年   128篇
  1996年   117篇
  1995年   96篇
  1994年   92篇
  1993年   97篇
  1992年   72篇
  1991年   66篇
  1990年   53篇
  1989年   58篇
  1988年   43篇
  1987年   32篇
  1986年   32篇
  1985年   51篇
  1984年   42篇
  1983年   43篇
  1982年   46篇
  1981年   47篇
  1980年   36篇
  1979年   33篇
  1978年   30篇
  1977年   26篇
  1975年   27篇
  1974年   21篇
  1973年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The accompanying paper (Josephson, I. R., A. Guia, E. G. Lakatta, and M. D. Stern. 2002. Biophys. J. 83:2575-2586) examined the effects of conditioning prepulses on the kinetics of unitary L-type Ca(2+) channel currents using Ca(2+) and Ba(2+) ions to determine the ionic-dependence of gating mechanisms responsible for channel inactivation and facilitation. Here we demonstrate that in addition to alterations in gating kinetics, the conductance of single L-type Ca(2+) channels was also dependent on the prior conditioning voltage and permeant ions. All recordings were made in the absence of any Ca(2+) channel agonists. Strongly depolarizing prepulses produced an increased frequency of long-duration (mode 2) openings during the test voltage steps. Mode 2 openings also displayed >25% larger single channel current amplitude (at 0 mV) than briefer (but well-resolved) mode 1 openings. The conductance of mode 2 openings was 26 pS for 105 mM Ba(2+), 18 pS for 5 mM Ba(2+), and 6 pS for 5 mM Ca(2+) ions; these values were 70% greater than the conductance of Ca(2+) channel openings of all durations (mode 1 and mode 2). Thus, the prepulse-driven shift into mode 2 gating results in a longer-lived Ca(2+) channel conformation that, in addition, displays altered permeation properties. These results, and those in the accompanying paper, support the hypothesis that multiple aspects of single L-type Ca(2+) channel behavior (gating kinetics, modal transitions, and ion permeation) are interrelated and are modulated by the magnitude of the conditioning depolarization and the nature and concentration of the ions permeating the channel.  相似文献   
992.
beta-Carotene and other xanthophylls present in pepper fruit as both free and esterified forms were oxidized using a free radical initiator (2,2'-azo-bis-isobutyronitrile). Capsorubin was degraded most slowly, followed by zeaxanthin, capsanthin, and beta-carotene. The presence of keto groups at the ends of the polyene chain could be a structural factor contributing to this difference in reactivity. It was also shown that whereas capsanthin and its esters and capsorubin and its esters were degraded at the same rate, zeaxanthin esters responded differently to the oxidation process, and were degraded more quickly than free zeaxanthin. The presence of unsaturated fatty acids (mainly linoleic) that esterify zeaxanthin help to accelerate the degradation of this xanthophyll and decreasing its antioxidant action. The antioxidant capacity of capsorubin and capsanthin (both in free and esterified form) exclusive to the genus capsicum should be taken into account.  相似文献   
993.
[Ru(2,2'-bipyridine)(2)(4,4'-dicarboxy-2,2'-bipyridine)](2+) (RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. In the present study, we demonstrated the usefulness of this probe for monitoring the rotational diffusion of high-molecular-weight (MW) proteins. Using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source, we compared the intensity and anisotropy decays of RuBDc conjugated to immunoglobulin G (IgG) and immunoglobulin M (IgM), which show a six-fold difference in MW We obtained slightly longer lifetimes for IgM (=428 ns in buffer) than IgG (=422 ns in buffer) in the absence and presence of glycerol, suggesting somewhat more efficient shielding of RuBDc from water in IgM than in IgG. The anisotropy decay data showed longer rotational correlation times for IgM (1623 and 65.7 ns in buffer) as compared to IgG (264 and 42.5 ns in buffer). Importantly, the ratio of the long rotational correlation times of IgM to IgG in buffer was 6.2, which is very close to that of MW of IgM to IgG (6.0). The shorter correlation times are most likely to be associated with domain motions within the proteins. The anisotropy decays reflect both the molecular size and shape of the immunoglobulins, as well as the viscosity. These results show that RuBDc can have numerous applications in studies of high-MW protein hydrodynamics and in fluorescence polarization immunoassays (FPI) of high-MW analytes.  相似文献   
994.
995.
Many diseases such as cardiac arrhythmia, diabetes, and chronic alcoholism are associated with a marked decrease of plasma and parenchymal Mg(2+), and Mg(2+) administration is routinely used therapeutically. This study uses isolated rat hepatocytes to ascertain if and under which conditions increases in extracellular Mg(2+) result in an increase in intracellular Mg(2+). In the absence of stimulation, changing extracellular Mg(2+) had no effect on total cellular Mg(2+) content. By contrast, carbachol or vasopressin administration promoted an accumulation of Mg(2+) that increased cellular Mg(2+) content by 13.2 and 11.8%, respectively, and stimulated Mg(2+) uptake was unaffected by the absence of extracellular Ca(2+). Mg(2+) efflux resulting from stimulation of alpha- or beta-adrenergic receptors operated with a Mg(2+):Ca(2+) exchange ratio of 1. These data indicate that cellular Mg(2+) uptake can occur rapidly and in large amounts, through a process distinct from Mg(2+) release, but operating only upon specific hormonal stimulation.  相似文献   
996.
The Rho GTPase and Fyn tyrosine kinase have been implicated previously in positive control of keratinocyte cell-cell adhesion. Here, we show that Rho and Fyn operate along the same signaling pathway. Endogenous Rho activity increases in differentiating keratinocytes and is required for both Fyn kinase activation and increased tyrosine phosphorylation of beta- and gamma-catenin, which is associated with the establishment of keratinocyte cell-cell adhesion. Conversely, expression of constitutive active Rho is sufficient to promote cell-cell adhesion through a tyrosine kinase- and Fyn-dependent mechanism, trigger Fyn kinase activation, and induce tyrosine phosphorylation of beta- and gamma-catenin and p120ctn. The positive effects of activated Rho on cell-cell adhesion are not induced by an activated Rho mutant with defective binding to the serine/threonine PRK2/PKN kinases. Endogenous PRK2 kinase activity increases with keratinocyte differentiation, and, like activated Rho, increased PRK2 activity promotes keratinocyte cell-cell adhesion and induces tyrosine phosphorylation of beta- and gamma-catenin and Fyn kinase activation. Thus, these findings reveal a novel role of Fyn as a downstream mediator of Rho in control of keratinocyte cell-cell adhesion and implicate the PRK2 kinase, a direct Rho effector, as a link between Rho and Fyn activation.  相似文献   
997.
We utilize structurally targeted peptides to identify a "tC fusion switch" inherent to the coil domains of the neuronal t-SNARE that pairs with the cognate v-SNARE. The tC fusion switch is located in the membrane-proximal portion of the t-SNARE and controls the rate at which the helical bundle that forms the SNAREpin can zip up to drive bilayer fusion. When the fusion switch is "off" (the intrinsic state of the t-SNARE), zippering of the helices from their membrane-distal ends is impeded and fusion is slow. When the tC fusion switch is "on," fusion is much faster. The tC fusion switch can be thrown by a peptide that corresponds to the membrane-proximal half of the cognate v-SNARE, and binds reversibly to the cognate region of the t-SNARE. This structures the coil in the membrane-proximal domain of the t-SNARE and accelerates fusion, implying that the intrinsically unstable coil in that region is a natural impediment to the completion of zippering, and thus, fusion. Proteins that stabilize or destabilize one or the other state of the tC fusion switch would exert fine temporal control over the rate of fusion after SNAREs have already partly zippered up.  相似文献   
998.
The human chemokine CCL2 gene was expressed in the yeast P.pastoris and gave rise to a mixture of differently glycosylated recombinant proteins. In comparison to non-glycosylated E.coli-derived CCL2, glycosylated yeast CCL2L was 4-20 times less active in a chemotactic assay in vitro. However, CCL2L could maintain full activity upon prolonged incubation at 37 degrees C, whereas the non-glycosylated chemokine readily lost activity. It could be hypothesized that glycosylation is a mechanism used by the organism to modulate CCL2 stability. The partial loss of specific activity due to glycosylation is balanced by the advantage of prolonging the effectiveness of chemokine. Thus, differential glycosylation allows one to obtain highly effective short-lived CCL2 or less-effective long-lived CCL2 and may thus represent a novel mechanism of adaptation to pathological versus physiological conditions.  相似文献   
999.
The cytokine IL-12 plays a critical role in inducing the production of IFN-gamma from T and NK cells and in the polarization of T cells towards the Th1 phenotype. IL-12 is comprised of two subunits (IL-12p40 and IL-12p35) that together form the biologically active p70 molecule, and IL-12 functions via binding to a heterodimeric receptor (IL-12Rbeta1 and IL-12Rbeta2). Previous studies utilizing mice deficient for either the IL-12 cytokine or the IL-12-induced signaling molecule STAT4 have established a critical role for IL-12 during infection with Leishmania major. However, these studies warrant careful re-interpretation in light of the recent discovery of the IL-12-related cytokine, IL-23, which utilizes the IL-12p40 chain in combination with an IL-12p35-related molecule, called p19, and a receptor comprised of the IL-12Rbeta1 chain plus a unique chain referred to as IL-23R. We analyzed the course of L. major infection in mice deficient for the IL-12-specific IL-12Rbeta2 subunit in order to assess the role of IL-12 signaling without disruption of the IL-23 pathway. After infection with L. major, IL-12Rbeta2KO mice of a resistant background (C57Bl/6) developed large cutaneous lesions similar to those developed by susceptible BALB/c mice. Draining lymph node cells from L. major-infected IL-12Rbeta2KO mice released the Th2 cytokines IL-4 and IL-5 after in vitro stimulation with Leishmania lysate but were completely devoid of IFN-gamma, consistent with a default towards a strong parasite-specific Th2 response. L. major-infected IL-12Rbeta2KO mice were also devoid of parasite-specific IgG2a antibodies, and interestingly, their footpad lesions ulcerated earlier than those of susceptible BALB/c mice.  相似文献   
1000.
A role for the exosome in the in vivo degradation of unstable mRNAs   总被引:1,自引:0,他引:1  
In mammals, the mRNAs encoding many proteins involved in inflammation bear destabilizing AU-rich elements (AREs) in the 3'-untranslated region. The exosome, a complex of 3' --> 5' exonucleases, is rate limiting in the destruction of such mRNAs in a mammalian in vitro system, but a role in vivo has not been demonstrated. The phenomenon of ARE-mediated degradation also occurs in the protist parasite Trypanosoma brucei. Messenger RNAs with 3'-untranslated region U-rich elements, which strongly resemble AREs, are extremely unstable in the trypanosome form that parasitizes mammals. The first step in degradation of these mRNAs in vivo is rapid destruction of the 3'-untranslated region; subsequently the mRNA is destroyed by exonucleases acting in both 5' --> 3' and 3' --> 5' directions. We here investigated the roles of three subunits of the trypanosome exosome complex, RRP45, RRP4, and CSL4, in this process, depleting the individual subunits in vivo by inducible RNA interference. RRP45 depletion, which probably disrupts exosome integrity, caused a delay in the onset of degradation of the very unstable RNAs, but did not affect degradation of more stable species. Depletion of RRP4 or CSL4 does not affect the stability of the residual exosome and did not change mRNA degradation kinetics. We conclude that the exosome is required for the initiation of rapid degradation of unstable mRNAs in trypanosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号